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Abstract

We suggest foundations for the Shapley value and for the naïve solution, which assigns to any
player the di¤erence between the worth of the grand coalition and its worth after this player
left the game. To this end, we introduce the decomposition of solutions for cooperative
games with transferable utility. A decomposer of a solution is another solution that splits
the former into a direct part and an indirect part. While the direct part (the decomposer)
measures a player�s contribution in a game as such, the indirect part indicates how she
a¤ects the other players�direct contributions by leaving the game. The Shapley value turns
out to be unique decomposable decomposer of the naïve solution.
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1. Introduction

The Shapley value (Shapley, 1953) is probably the most eminent one-point solution
concept for cooperative games with transferable utility (TU games). Besides its original
axiomatic foundation by Shapley himself, alternative foundations of di¤erent types have
been suggested later on. Important direct axiomatic characterizations are due to Myerson
(1980) and Young (1985). Hart and Mas-Colell (1989) suggest an indirect characterization as
marginal contributions of a potential (function).1 Roth (1977) shows that the Shapley value
can be understood as a von Neumann-Morgenstern utility. As a contribution to the Nash
program, which aims at building bridges between cooperative and non-cooperative game
theory, Pérez-Castrillo and Wettstein (2001) implement the Shapley value as the outcomes
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of the sub-game perfect equilibria of a combined bidding and proposing mechanism, which
is modeled by a non-cooperative extensive form game.2

Among the solution concepts for TU games, the Shapley value can be viewed as the mea-
sure of the players�own productivity in a game. This view is strongly supported by Young�s
(1985) characterization by three properties: e¢ ciency, strong monotonicity, and symmetry.
E¢ ciency says that the worth generated by the grand coalition is distributed among the
players. Strong monotonicity requires a player�s payo¤ to increase weakly whenever her
productivity, measured by her marginal contributions to all coalitions of the other players,
weakly increases. Symmetry ensures that equally productive players obtain the same payo¤.
A perhaps naïve way to measure a particular player�s productivity within a game is to

only look at the marginal contribution of this player to the coalition of all others, which
we address as the �naïve solution�. This solution, however, is problematic for (at least)
two reasons. First, in general, the naïve payo¤s do not sum up to the worth generated
by the grand coalition. Hart and Mas-Colell (1989) use this fact as a motivation of the
potential approach to the Shapley value. Second and not less important, one could argue
that every player�s presence is necessary for generating the naïve payo¤ of any given player,
and therefore the productivity gains re�ected in that payo¤ should be partly attributed to
the others.
In order to tackle the second problem of the naïve solution mentioned above, we suggest

the decomposition of solutions. A solution  decomposes a solution ' if it splits ' into direct
and indirect contributions in the following sense. A particular player�s payo¤ for ' is the
sum of her payo¤ for  (direct contribution) and what the other players gain or lose under
 when this particular player leaves the game (indirect contribution). That is, the indirect
contributions re�ect what a player contributes to the other players�direct contributions.
We say that a solution is decomposable if there exists a decomposer, i.e., a solution that
decomposes it.
We show that the Shapley value is the unique decomposable decomposer of the naïve

solution (Theorem 3). The naïve solution thus conveys interesting information about the
Shapley value; and its decomposition may be viewed as a rationale for the naïve solution in
terms of the Shapley value. Vice versa, the Shapley value emerges as the natural decompo-
sition of a player�s marginal contribution to all other players in the sense that the Shapley
value itself can be further rationalized in terms of some underlying solution.
We answer the question of which solutions are decomposable by showing that decom-

posability is equivalent to a number of other well-known properties of solutions: balanced
contributions (Myerson, 1980), path independence (Hart and Mas-Colell, 1989), consistency
with the Shapley value (Calvo and Santos, 1997), and admittance of a potential (Calvo and
Santos, 1997; Ortmann, 1998) (Theorem 4).
We further establish that amongst all the decomposers of a decomposable solution, there

is one and only one that is itself decomposable. It follows immediately that, starting with any
decomposable solution ', there is a unique sequence in which each term is a decomposer of

2Ju and Wettstein (2009) suggest a class of bidding mechanisms that implement several solution concepts
for TU games.
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its predecessor (Theorem 7). We call this sequence the �resolution�of '. Resolutions allow
us to capture higher-order contributions, where for instance the third-order contribution
captures what player i contributes to player j�s contribution to player k�s payo¤. We explore
the structure of higher-order decomposers using higher-order contributions (Theorem 12).
The remainder of this paper is organized as follows. In Section 2, we give basic de�nitions

and notation. In the third section, we formalize and study the notions of decomposition and
decomposability outlined above and present our new rationale for the naïve solution and
the Shapley value. The fourth section investigates the notion of decomposability. The �fth
section relates higher-order decompositions to higher-order contributions. Some remarks
conclude the paper. All proofs are contained in the appendices.

2. Basic de�nitions and notation

A (TU) game on a �nite player set N is given by a characteristic function v : 2N ! R,
v (;) = 0. The set of all games on N is denoted by V (N). Let N denote the set of all �nite
player sets.3 The cardinalities of S; T;N;M 2 N are denoted by s; t; n; and m, respectively.
For T � N; T 6= ;; the game uT 2 V (N) given by uT (S) = 1 if T � S and uT (S) = 0

otherwise is called a unanimity game. As pointed out in Shapley (1953), these unanim-
ity games form a basis of the vector space4 V (N) ; i.e., any v 2 V (N) can be uniquely
represented by unanimity games,

v =
X

T�N :T 6=;

�T (v) � uT : (1)

where the Harsanyi dividends �T (v) can be determined recursively via �T (v) = v (T )�P
S(T :S 6=; �S (v) for all T � N; T 6= ; (see Harsanyi, 1959):
A solution/value is an operator ' that assigns a payo¤ vector ' (v) 2 RN to any

v 2 V (N), N 2 N : The Shapley value (Shapley, 1953) distributes the dividends �T (v)
equally among the players in T , i.e.,

Shi (v) :=
X

T�N :i2T

�T (v)

t
(2)

for all N 2 N ; v 2 V (N) ; and i 2 N: A solution is e¢ cient if
P

i2N 'i (v) = v (N) for all
N 2 N and v 2 V (N) :
In this paper, we consider situations where some players leave the game. For v 2 V (N)

and M � N , the restriction of v to M is denoted by vjM 2 V (M) and is given by
vjM = v (S) for all S �M ; for v 2 V (N) and M � N , the game without the players in M ,
v�M 2 V (N nM) ; is given by v�M = vjNnM . Instead of v�fig, we write v�i.

3We assume that the player sets are subsets of some given countably in�nite set U, the universe of players;
N denotes the set of all �nite subsets of U.

4For v; w 2 V (N) and � 2 R; the games v + w 2 V (N) and � � v 2 V (N) are given by (v + w) (S) =
v (S) + w (S) and (� � v) (S) = � � v (S) for all S � N:
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3. Decomposing the naïve solution yields the Shapley value

The naïve solution, Nï, is given by

Nïi (v) := v (N)� v�i (N n fig) (3)

for all N 2 N ; v 2 V (N) ; and i 2 N: It re�ects a player i�s productivity in a naïve fashion
by asking what happens to the worth generated by the grand coalition when i leaves the
game.
This naïve solution, however, is problematic for (at least) two reasons. First, in general,

the naïve payo¤s do not sum up to the worth generated by the grand coalition. Second and
possibly more important, the di¤erence v (N) � v�i (N n fig) cannot only be attributed to
i but also requires the cooperation of players from N n fig. Consequently, we are interested
in a solution  that distributes v (N)� v�i (N n fig) among all players,

v (N)� v�i (N n fig) =
X
`2N

�
 ` (v)�  `

�
v�i
��

where  i (v�i) = 0. In other words, we are interested in a solution that decomposes the
naïve solution in the above sense, i.e.,

Nïi (v) =  i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
��

for all N 2 N ; v 2 V (N) ; and i 2 N: This motivates the following de�nition.

De�nition 1. A solution  is a decomposer of the solution ' if

'i (v) =  i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
��

(4)

for all N 2 N ; v 2 V (N) ; and i 2 N . A solution ' is called decomposable if there exists
a decomposer  of '.

A decomposer  of ' breaks up player i�s payo¤ 'i (v) into a direct part  i (v) and
an indirect part

P
`2Nnfig [ ` (v)�  ` (v

�i)]. The indirect part indicates how much player i
contributes to the other players�direct parts. Thus, if a decomposer  of ' exists, then it
provides a kind of rationale or foundation for '.
However, a solution ' that is decomposable has many di¤erent decomposers, so that

there is ambiguity about which of them to select. It turns out that there is a unique one
amongst all the decomposers of ' that is itself decomposable, i.e., that is rationalizable in
terms of some underlying solution. Precisely, we have:

Proposition 2. If a solution ' is decomposable, then it has one, and only one, decomposer
 that is itself decomposable.
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In view of Proposition 2, we may talk of the (decomposable) decomposer  (1) of any
decomposable solution '; and indeed the decomposer  (2) of  (1),  (3) of  (2), and so on ad
in�nitum. We shall examine this full sequence later when we discuss the �resolution�of '.
But we need look at just the �rst term in the sequence to rationalize the naïve solution in
terms of the Shapley value.

Theorem 3. The Shapley value is the unique decomposable decomposer of the naïve solu-
tion.

It is evident that any e¢ cient solution is a decomposer of the naïve solution.5 The main
point of Theorem 3 is that the Shapley value is distinguished amongst them as the only one
that is decomposable.
At �rst glance, Theorem 3 seems to imply that the Shapley value is determined by the

�last�marginal contributions. A deeper look, however, reveals that this, of course, is not
the case. By considering the e¤ects of players�leaving the game on other players�payo¤s,
we relate the payo¤ for a game to payo¤s in games with smaller player sets. Since solutions
apply to games with any number of players, in the end, all marginal contributions are taken
into account.

4. Decomposability

In the previous section, we have highlighted the Shapley value as a the unique decom-
posable decomposer of the naïve solution. This triggers the question of which solutions are
decomposable? To answer this question, we establish that the notion of decomposability is
equivalent to a number of well-known properties.

Theorem 4. The following properties of a solution ' are equivalent:

(i) Decomposability: The solution ' is decomposable.
(ii) Balanced contributions (Myerson, 1980): For all N 2 N ; v 2 V (N) ; and i; j 2 N; we

have
'i (v)� 'i

�
v�j
�
= 'j (v)� 'j

�
v�i
�
:

(iii) Path independence (Hart and Mas-Colell, 1989): For all N 2 N ; v 2 V (N) ; and all
bijections �; �0 : N ! f1; : : : ; ng ; we haveX

i2N
'i
�
v�Si(�)

�
=
X
i2N

'i(v
�Si(�0));

where Si (�) := f` 2 N j � (`) > � (i)g.

5Indeed, let  be any e¢ cient solution. Then, v (N)�v�i (N n fig) =
P

`2N  ` (v)�
P

`2Nnfig  `
�
v�i
�
=

 i (v) +
P

`2Nnfig
�
 ` (v)�  `

�
v�i
��
.
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(iv) Admittance of a potential (Calvo and Santos, 1997; Ortmann, 1998): There exits a
mapping P : [N2NV (N)! R such that

'i (v) = P (v)� P
�
v�i
�

for all N 2 N ; v 2 V (N) ; and i 2 N:
(v) Consistency with the Shapley value (Sánchez S., 1997; Calvo and Santos, 1997): For

all N 2 N and v 2 V (N) ; we have ' (v) = Sh (v') ; where v' 2 V (N) is given by

v' (S) =
X
`2S

'` (vjS) for all S � N: (5)

Balanced contributions states that player j su¤ers/gains from the removal of player i by
the same amount as the other way around. Path independence can be interpreted as follows.
Sequentially buying players out of the game by paying them their payo¤s according to ',
costs the same independent of the order in which the players are bought out. A solution
admits a potential if it is the di¤erential of some potential function on the domain of all
games. A solution ' is consistent according to the de�nition in Theorem 4(v) if it can
be obtained as the Shapley value of an auxiliary game. In the auxiliary game, the worth
generated by a coalition equals the sum of its players�payo¤s according to ' in the game
restricted to this coalition.
Important examples of solutions that satisfy the properties of Theorem 4 are the family

of semivalues (Dubey et al., 1981; Calvo and Santos, 1997). Besides the Shapley value, this
class contains the Banzhaf-Owen value (Banzhaf, 1965; Owen, 1975; Dubey and Shapley,
1979). Solutions that are e¢ cient but di¤er from the Shapley value as for example the
egalitarian Shapley values (Joosten, 1996) or the equal surplus division value (Driessen and
Funaki, 1991) do not satisfy the properties of Theorem 4.
To prove Theorem 4, we shall show the equivalence of (i) and (iv), since the rest follows

from Calvo and Santos (1997, Corollary 3.4). This equivalence is, in turn, driven by the fact
that a solution  is a decomposer of the solution ' if and only if

P' (v) =
X
i2N

 i (v)

for all N 2 N ; v 2 V (N) ; and i 2 N , where P' denotes the zero-normalized potential
of '.6 This further implies that a decomposer  of a solution ' is not unique. In fact,
any solution  0 such that

P
`2N  

0
` (v) =

P
`2N  ` (v) for all N 2 N and v 2 V (N) also

decomposes ': As stated in Proposition 2, however, there can be only one decomposer of '
that is decomposable itself. This is further elaborated on in the next section.

6A potential P is zero-normalized if P (;) = 0 for ; 2 V (;).
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5. Higher-order decompositions

In this section, we study decompositions of decomposers. From Proposition 2, we already
know that there exists at most one decomposable decomposer of a decomposable solution.
The next proposition clari�es the existence and the structure of such a decomposer.

Proposition 5. If a solution ' is decomposable, then its unique decomposable decomposer
 is given by

 i (v) =
X

T�N :i2T

�T (v
')

t2
(6)

for all N 2 N ; v 2 V (N) ; and i 2 N; where v' is de�ned in (5).

As an immediate consequence of this proposition, a solution is decomposable if and only
if it has a decomposable decomposer. This gives rise to study the sequence of decomposable
decomposers and to the following de�nition.

De�nition 6. A resolution of a solution ' is a sequence
�
'(k)

�
k2N of solutions such that

'(0) = ' and '(k+1) is a decomposer '(k) for all k 2 N. If a resolution exists for a solution,
then the latter is called resolvable.

As an immediate consequence of Proposition 5, resolvability is equivalent to decompos-
ability. Moreover, a resolution, if it exists, is unique. Therefore, the solution '(k) is called
the kth decomposer of ': The next result speci�es that the formulae for the higher-order
decomposers are similar to (6).

Theorem 7. Let the solution ' be decomposable.
(i) There exists a unique resolution

�
'(k)

�
k2N of '.

(ii) The resolution of ' is given by

'
(k)
i (v) =

X
T�N :i2T

�T (v
')

tk+1
(7)

for all k 2 N; N 2 N ; v 2 V (N) ; and i 2 N:
(iii) The resolution of the Shapley value is given by

Sh
(k)
i (v) =

X
T�N :i2T

�T (v)

tk+1

for all k 2 N; N 2 N ; v 2 V (N) ; and i 2 N:
(iv) The resolution of ' is given by

'(k) (v) = Sh(k) (v')

for all k 2 N; N 2 N ; v 2 V (N) :
7



(v) The resolution of ' is given by

'(k) (v) = Sh(k�1)
�
vP

'�
for all k 2 N; k > 0; N 2 N ; and v 2 V (N) ; where vP' 2 V (N) is given by vP' (S) =
P' (vjS) for all S � N:

Note that '(0) = ', which follows from the consistency with the Shapley value of '
(Theorem 4) and (2). The theorem has two implications. First, for given k > 0, the per
capita dividends of greater coalitions have a lower in�uence on the payo¤ than those of
small coalitions. This re�ects that dividends of greater coalitions are more �endangered�by
players leaving the game. Second, with increasing order of decomposition, the per capita
dividends of non-singleton coalitions have a lower in�uence on the payo¤s. As an explanation
we suggest that higher-order decomposers sum up to the original value taking into account
increasingly more indirect e¤ects. The extreme case is given in the next corollary.

Corollary 8. For all N 2 N ; v 2 V (N) ; i 2 N; and any decomposable solution ', we have

lim
k!1

'
(k)
i (v) = 'i

�
vjfig

�
:

Next, we will investigate the relationship between higher-order contributions and higher-
order decompositions. It is evident that, in accordance with (4), one can start with ' written
out in terms of '(1), and successively substitute '(k+1) for '(k) for k 2 f1; : : : ; �g to arrive
at a formula for ' in terms of '(�). It is further evident that the formula will entail several
higher-order contributions of individuals, i.e., for sequences of individuals i1; i2; : : : ; i` one
will need to consider the contribution of i` to i`�1�s contribution to : : : to i2�s contribution
to i1. This is made precise in Theorem 12.
For example, if � is the decomposer of  and  is the decomposer of ', then substitution

of  i (v) by �i (v) +
P

`2Nnfig [�` (v)� �` (v
�i)] in (4) yields

'i (v) = �i (v) + 3 �
X

`2Nnfig

�
�` (v)� �`

�
v�i
��

+
X

j2Nnfig

X
k2Nnfi;jg

�
�k (v)� �k

�
v�j
��
�
�
�k
�
v�i
�
� �k

�
v�fj;ig

��
;

where player i makes a contribution to player j�s contribution to player k�s payo¤ according
to �, �

�k (v)� �k
�
v�j
��
�
�
�k
�
v�i
�
� �k

�
v�fj;ig

��
: (8)

We de�ne higher-order contributions as follows. Let the players i; j; and k be distinct.
The contribution of j to k�s payo¤ under the solution ' in the games v and v�i is given by

D(k;j)' (v) = 'k (v)� 'k
�
v�j
�
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and
D(k;j)'

�
v�i
�
=
�
'k
�
v�i
�
� 'k

�
v�fj;ig

��
:

Further, the contribution of i to j�s contribution to k is given by

D(k;j;i)' (v) =
�
'k (v)� 'k

�
v�j
��
�
�
'k
�
v�i
�
� 'k

�
v�fj;ig

��
= D(k;j)' (v)�D(k;j)'

�
v�i
�

In general, we have the following recursive de�nition.

De�nition 9. For any solution '; all N �M 2 N , and v 2 V (N) ; we set

'i (v) = 0 for all i 2M nN: (9)

Moreover, for all � 2 N, N � M 2 N , v 2 V (N), i 2 M; and i = (i1; : : : ; i�) 2 M�, we
de�ne Di' (v) recursively by

D()' (v) := 0;

D(i)' (v) := 'i (v) ;

Di' (v) := D(i1;:::;i��1)' (v)�D(i1;:::;i��1)'
�
v�i�

�
: (10)

The following theorem expresses a solution ' as the sum of higher-order contributions
D(i;i) of a �xed higher-order decomposer '(�).

Proposition 10. For any decomposable solution ', we have

'i (v) =
X
i2N�

D(i;i)'
(�) (v) (11)

for all � 2 N; N 2 N , v 2 V (N), and i 2 N .

To illustrate this result, let N = f1; 2; 3g and � = 2. Then,

'1 (v) = D(1;1;1)'
(2) (v) +D(1;2;1)'

(2) (v) +D(1;3;1)'
(2) (v)

+D(2;1;1)'
(2) (v) +D(2;2;1)'

(2) (v) +D(2;3;1)'
(2) (v)

+D(3;1;1)'
(2) (v) +D(3;2;1)'

(2) (v) +D(3;3;1)'
(2) (v) :

At �rst glance, this formula involves only third-order contributions. In view of De�nition 10,
however, some of the expressions actually are �rst-order contributions and second-order
contributions. Indeed, we have

'1 (v) = D(1)'
(2) (v)

+ 3 �D(2;1)'
(2) (v) + 3 �D(3;1)'

(2) (v) +D(2;3;1)'
(2) (v) +D(3;2;1)'

(2) (v) :

In this formula, all (higher-order) contributions have a natural interpretation. In order to
capture this observation more generally, we invoke the following de�nition.

9



De�nition 11. For all � 2 N and N 2 N de�ne the set of all sequences with members
from N of length � with distinct members by

N [�] := fi 2 N� j ik 6= i` for all k; ` 2 f1; : : : ; �g ; k 6= `g ;

where N� denotes the set of all sequences with members from N of length �. Note that
N [0] = N0 = f()g for all N 2 N .

The following theorem expresses a solution ' as the sum of genuine (higher-order) con-
tributions D(i;i) of a �xed higher-order decomposer '(�).

Theorem 12. Fix � 2 N. For any decomposable solution ', we have

'i (v) =

�X
t=0

g (t; �) �
X

i2(Nnfig)[t]

D(i;i)'
(�) (v) (12)

for N 2 N , v 2 V (N), and i 2 N , where g (t; �) > 0 and

g (t; �) =
1

t!
�

tX
s=0

(�1)t�s �
�
t

s

�
� (s+ 1)� : (13)

Note that the summation index in (12) is in fact bounded above by min f�; n� 1g. For
t > n� 1, the right-most sum in (12) is empty because (N n fig)[t] = ;.

6. Concluding remarks

We introduce the decomposition of a solution by another solution (the decomposer) into
a direct part and an indirect part. The indirect part indicates how much a player contributes
to another player�s payo¤ according to the decomposer.
We characterize the solutions that can be decomposed and use this insight in order to

provide a new foundation of the naïve solution and interesting insights regarding the Shapley
value. In particular, the Shapley value is the unique decomposable decomposer of the naïve
solution.
Taking the idea of decomposition one step further leads to asking how much one player

contributes to how much a second player contributes to a third player�s payo¤ in a game.
This leads to the notion of higher-order contributions and higher-order decompositions of
solutions.
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Appendix A. Proof of Theorem 4

It su¢ ces to show that (i) is equivalent to (iv), since it has been proved in Calvo and
Santos (1997, Corollary 3.4) that (ii), (iii), (iv), and (v) are equivalent.
Let P : V ! R be a potential for the solution ': Let the solution  P be given by

 Pi (v) = jN j
�1 � P (v) for all N 2 N ; v 2 V (N) ; and i 2 N . By construction, we have

 Pi (v) +
X

`2Nnfig

�
 P` (v)�  P`

�
v�i
��
=
X
`2N

 P` (v)�
X

`2Nnfig

 P`
�
v�i
�

= P (v)� P
�
v�i
�

= 'i (v)

for all N 2 N ; v 2 V (N) ; and i 2 N: That is,  P decomposes ':
Let  be a decomposer of the solution ': Let the mapping P : V ! R be given by

P (v) =
P

`2N  ` (v) for all N 2 N and v 2 V (N). By construction, we have

P (v)� P 
�
vjNnfig

�
=
X
`2N

 ` (v)�
X

`2Nnfig

 `
�
v�i
�

=  i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
��

= 'i (v)

for all N 2 N ; v 2 V (N) ; and i 2 N: That is, P is a potential for ':

Appendix B. Lemma and proof

The following lemma will be useful for the proofs of Proposition 5 and Theorem 7.

Lemma 13. For all k 2 N, N 2 N ; v 2 V (N) ; and i 2 N , we have

X
T�N :i2T

�T (v)

tk+1
+

X
`2Nnfig

24 X
T�N :`2T

�T (v)

tk+1
�

X
T�Nnfig:`2T

�T (v
�i)

tk+1

35 = X
T�N :i2T

�T (v)

tk
:

This can be seen as follows: For all N 2 N ; v 2 V (N) ; and i 2 N ,X
`2N

X
T�N :`2T

�T (v)

tk+1
�

X
`2Nnfig

X
T�Nnfig:`2T

�T (v
�i)

tk+1
=
X
T�N

X
`2T

�T (v)

tk+1
�

X
T�Nnfig

X
`2T

�T (v
�i)

tk+1

=
X
T�N

�T (v)

tk
�

X
T�Nnfig

�T (v)

tk
;

where the last equation uses the obvious fact that �T (v) = �T (v
�i) for T � N n fig.

11



Appendix C. Proof of Proposition 5

Uniqueness: Let the solution ' be decomposable and let  and  0 be decomposable
decomposers of ': We show  (v) =  0 (v) for all N 2 N and v 2 V (N) by induction on n:
Induction basis: For n = 1; the claim is immediate from (4).
Induction hypothesis : Suppose  (v) =  0 (v) for all N 2 N and v 2 V (N) such that

n � t:
Induction step: Let N 2 N be such that jN j = t+ 1: For v 2 V (N) and i 2 N; we have

 i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
�� (4)
= 'i (v)

(4)
=  0i (v) +

X
`2Nnfig

�
 0` (v)�  0`

�
v�i
��
:

Hence, the induction hypothesis impliesX
`2N

 ` (v) =
X
`2N

 0` (v) : (C.1)

Since  and  0 are decomposable and by Theorem 4, both  and  0 satisfy the balanced
contributions property. Hence, we have

 i (v)�  i
�
v�j
�
=  j (v)�  j

�
v�i
�

for all j 2 N n fig : (C.2)

Summing up (C.2) over all j 2 N n fig gives

(n� 1) �  i (v)�
X

j2Nnfig

 i
�
v�j
�
=

X
j2Nnfig

�
 j (v)�  j

�
v�i
��

and therefore

n �  i (v) =
X
`2N

 ` (v)�
X

j2Nnfig

 j
�
v�i
�
+

X
j2Nnfig

 i
�
v�j
�
: (C.3)

Analogously, we obtain

n �  0i (v) =
X
`2N

 0` (v)�
X

j2Nnfig

 0j
�
v�i
�
+

X
j2Nnfig

 0i
�
v�j
�
: (C.4)

Finally, (C.1), (C.3), (C.4), and the induction hypothesis entail  i (v) =  0i (v) :
Existence: Let the solution ' be decomposable and let the solution  be given by (6).

For all N 2 N ; v 2 V (N) ; and i 2 N , we obtain

 i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
��
=

X
T�N :i2T

�T (v
')

t
= Shi (v

') = 'i (v) ;

where the �rst equation follows from Lemma 13 (in conjunction with the obvious fact that
(v')�i = (v�i)

'), the second equation comes from (2), and the last equation follows from
Theorem 4(v). Thus,  is a decomposer of ':
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It remains to establish that  is decomposable. By (i) and (iv) of Theorem 4, this will
follow if  admits a potential. It is easy to check that the mapping P : V! R given by

P (v) =
X

T�N :T 6=;

�T (v
')

t2

for all N 2 N ; and v 2 V (N) is a potential for  :

Appendix D. Proof of Theorem 3

As we saw (Footnote 5), any e¢ cient solution decomposes the naïve solution, and hence
the Shapley value Sh is a decomposer of the naïve solution (since Sh is e¢ cient). But by
Hart and Mas-Colell (1989, Theorem A), a potential exists for Sh. So, by the equivalence
of (iv) and (i) in Theorem 4, Sh is itself decomposable. Then, by Proposition 2, it is the
only decomposer of the naïve solution that is decomposable.

Appendix E. Proof of Theorem 7

(i) This is an immediate consequence of Proposition 5.
(ii) We show the claim by induction on k.
Induction basis: For k = 0, the claim follows from Theorem 4(v) and (2). For k = 1, the

claim is established in Proposition 5.
Induction hypothesis (IH): Suppose the resolution of a decomposable ' is given by

'
(k)
i (v) =

X
T�N :i2T

�T (v
')

tk+1

for all k � K; N 2 N ; v 2 V (N) ; and i 2 N:
Induction step: Let the solution  be given by

 i (v) =
X

T�N :i2T

�T (v
')

tK+2
(E.1)
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for all N 2 N ; v 2 V (N) ; and i 2 N: We obtain

 i (v) +
X

`2Nnfig

�
 ` (v)�  `

�
v�i
��

=
X

T�N :i2T

�T (v
')

tK+2
+

X
`2Nnfig

24 X
T�N :`2T

�T (v
')

tK+2
�

X
T�Nnfig:`2T

�T
�
(v�i)

'�
tK+2

35
(6)
=

X
T�N :i2T

�T (v
')

tK+2
+

X
`2Nnfig

24 X
T�N :`2T

�T (v
')

tK+2
�

X
T�Nnfig:`2T

�T

�
(v')�i

�
tK+2

35
=

X
T�N :i2T

�T (v
')

tK+1

IH
= '

(K)
i (v)

where the third equation follows from Lemma 13. This establishes that  is a decomposer
of '(K). Remains to show that  is decomposable itself. By Theorem 4, it su¢ ces to show
that  admits a potential. In view of (E.1), one easily checks that the mapping P : V! R
given by

P (v) =
X

T�N :T 6=;

�T (v
')

tK+2

for all N 2 N ; and v 2 V (N) is a potential for  :
(iii) Since vSh = v for all v 2 V (N), this follows from (ii) and (2).
(iv) This is immediate from (iii) and (ii).
(v)

Appendix F. Proof of Proposition 10

Let ' be a decomposable solution. We proceed by induction on � 2 N:
Induction basis: The claim is immediate for � = 0:
For all N 2 N ; v 2 V (N) ; and i 2 N; we haveX

j2N
D(j;i)'

(1) (v) =
X
j2N

�
Dj'

(1) (v)�Dj'
(1)
�
v�i
��

=
X
j2N

h
'
(1)
j (v)� '

(1)
j

�
v�i
�i

= '
(1)
i (v) +

X
j2Nnfig

h
'
(1)
j (v)� '

(1)
j

�
v�i
�i

= 'i (v) ;

where the last equation follows from the fact that ' = '(0) is decomposed by '(1).
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Induction hypothesis: For all for � 2 N; 1 < � � ��, 2 � ��, N 2 N , v 2 V (N), and
i 2 N , we have

'i (v) =
X
i2N�

D(i;i)'
(�) (v) :

Induction step: For all N 2 N , v 2 V (N), and i 2 N; we obtainX
i2NA+1

D(i;i)'
(��+1) (v)

(10)
=

X
i2NA+1

�
Di'

(��+1) (v)�Di'
(��+1)

�
v�i
��

=
X
j2N

'
(1)
j (v)�

X
j2Nnfig

'
(1)
j

�
v�i
�

= 'i (v)

where the second equation follows from the induction hypothesis, (9), and the fact that '(1)

is resolved by
��
'(�)

�
�2N:�>0

�
and the third equation follows from the assumption that '(1)

decomposes '(0) = ':

Appendix G. Proof of Theorem 12

We prove the claim by a number of lemmas.

Lemma 14. For any decomposable solution ', we have

Di' (v) = D�i' (v)

for all � 2 N; N � M 2 N , v 2 V (N) ; i 2 Ma; and all bijections � : f1; : : : ; �g !
f1; : : : ; �g ; where �i 2Ma is given by (�i)` = i�(`) for all ` 2 f1; : : : ; �g :

Proof. Let ' be a decomposable solution. We proceed by induction on � 2 N:
Induction basis: The claim is immediate for � � 1; and i = (i; i) ; i 2M: For (i; j) 2M [2];

we obtain

D(i;j)' (v)
(10)
= 'i (v)� 'i

�
v�j
�
= 'j (v)� 'j

�
v�i
� (10)
= D(j;i)' (v) ;

where second equation follows from Theorem 4 and the assumption that ' is decomposable.
This shows the claim for � = 2:
Induction hypothesis (IH): Let the claim hold for all � 2 N; � � ��, 2 � ��, N 2 N ,

v 2 V (N) ; i 2Ma, and all bijections � : f1; : : : ; �g ! f1; : : : ; �g.
Induction step: ForN 2 N , v 2 V (N) ; i 2 N ��; i 2 N; and all bijections � : f1; : : : ; ��g !

f1; : : : ; ��g ; we obtain

D(i;i)' (v)
(10)
= Di' (v)�Di'

�
v�i
� IH
= D�i' (v)�D�i'

�
v�i
� (10)
= D(�i;i)' (v) :
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Further, for N 2 N , v 2 V (N) ; i 2M ���1; and i; j 2M; equation (10) entails

D(i;i;j)' (v) = D(i;i)' (v)�D(i;i)'
�
v�j
�

= Di' (v)�Di'
�
v�i
�
�
�
Di'

�
v�j
�
�Di'

�
v�fi;jg

��
= D(i;j)' (v)�D(i;j)'

�
v�i
�

= D(i;j;i)' (v) :

Hence, the claim holds for all bijections � : f1; : : : ; ��+ 1g ! f1; : : : ; ��+ 1g : �
For all � 2 N, N 2 N ; and i 2 N�; we set car (i) := fi` j ` 2 f1; : : : ; �gg : Hence, we

have N [�] = fi 2 N� j jcar (i)j = �g. Recall that N [0] = N0 = f()g.

Lemma 15. For any decomposable solution ', we have D(i;i)' (v) = Di' (v) for all � 2 N;
N �M 2 N , v 2 V (N) ; i 2M�; and i 2M such that i 2 car (i).

Proof. Let ' be a decomposable solution and � 2 N; N � M 2 N , v 2 V (N) ; i 2 M�;
and i 2 N such that i 2 car (i) : By Lemma 14, we are allowed to assume that i� = i: By
(10), we have

D(i;i)' (v) = Di' (v)�Di'
�
v�i
�

= Di' (v)�
�
D(i1;:::;i��1)'

�
v�i
�
�D(i1;:::;i��1)'

�
v�fi;i�g

��
= Di' (v) ;

which proves the claim. �
The following lemma is immediate from Lemmas 14 and 15.

Lemma 16. If ' is decomposable, then Di' (v) = Dj' (v) for all � 2 N; N � M 2 N ,
v 2 V (N) ; and i; j 2M� such that car (i) = car (j) :

For any decomposable solution ' and all N 2 N , v 2 V (N), S 2 N , we de�ne higher-
order di¤erences DS' (v) by

DS' (v) = Di' (v) (G.1)

with i 2M�; � 2 N such that car (i) = S: In view of Lemma 16, DS' (v) is well-de�ned.

Lemma 17. For any decomposable solution ', we have

'i (v) =
X

S�Nnfig:0�s��

f (s; �) �DS[fig'
(�) (v)

for all � 2 N; N 2 N , v 2 V (N), and i 2 N , where

f (s; �) =

sX
t=0

�
(�1)s�t �

�
s

t

�
� (t+ 1)�

�
: (G.2)

16



Proof. The claim follows from Lemmas 10 and 16, and (G.1) as follows. For � 2 N; N 2 N ;
S � N; s � �, and i 2 N; set N�

i (S) = fi 2 N� j car (i; i) = S [ figg : The theorem then
�claims�that jN�

i (S)j = f (s; �) : We prove the claim by induction on s: Fix �:
Induction basis: For s = 0; i.e., S = ;; we have jN�

i (S)j = jf(i; i; : : : ; i)gj = 1 = f (0; �) :
Induction hypothesis (IH): Let the claim hold for all s � s < �:
Induction step: Fix S � N n fig ; jSj = s + 1: The number of i 2 N� such that

car (i; i) � S [ fig is (s+ 1 + 1)� : To obtain jN�
i (S)j, we have to subtract the numbers

jN�
i (T )j ; T  S: By the induction hypothesis, we have

jN�
i (S)j

IH
= (s+ 1 + 1)� �

sX
t=0

�
s+ 1

t

�
� f (t; �)

(G.2)
= (s+ 1 + 1)� �

sX
k=0

�
s+ 1

k

�
�

kX
t=0

�
(�1)k�t �

�
k

t

�
� (t+ 1)�

�

= (s+ 1 + 1)� �
sX
t=0

(t+ 1)�
sX
k=t

�
(�1)k�t �

�
s+ 1

k

�
�
�
k

t

��

= (s+ 1 + 1)� �
sX
t=0

�
s+ 1

t

�
� (t+ 1)�

sX
k=t

�
(�1)k�t �

�
s+ 1� t

k � t

��

= (s+ 1 + 1)� �
sX
t=0

�
s+ 1

t

�
� (t+ 1)�

s�tX
k=0

�
(�1)k �

�
s+ 1� t

k

��

= (s+ 1 + 1)� �
sX
t=0

�
s+ 1

t

�
� (t+ 1)� �

�
� (�1)s+1�t

�
= (s+ 1 + 1)� +

sX
t=0

�
s+ 1

t

�
� (t+ 1)� � (�1)s+1�t

=

s+1X
t=0

(�1)s+1�t �
�
s+ 1

t

�
� (t+ 1)� ;

which concludes the proof. �
The theorem now follows from Lemma 17 by the following fact. For all � 2 N; N 2 N ,

i 2 N; and S � N n fig such that s � �; the set fi 2 (N n fig)s j car (i) = Sg has a
cardinality of s!. Finally, f (s; �) = jN�

i (S)j > 0 implies g (s; �) > 0:
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