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Abstract

The principle of weak monotonicity for cooperative games states that if a game changes so
that the worth of the grand coalition and some player�s marginal contribution to all coalitions
increase or stay the same, then this player�s payo¤ should not decrease. We investigate the
class of values that satisfy e¢ ciency, symmetry, and weak monotonicity. It turns out that
this class coincides with the class of egalitarian Shapley values. Thus, weak monotonicity
re�ects the nature of the egalitarian Shapley values in the same vein as strong monotonicity
re�ects the nature of the Shapley value. An egalitarian Shapley value redistributes the
Shapley payo¤s as follows: First, the Shapley payo¤s are taxed proportionally at a �xed
rate. Second, the total tax revenue is distributed equally among all players.
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1. Introduction

The Shapley value (Shapley, 1953) probably is the most eminent (single-valued) solu-
tion concept for cooperative games with transferable utility (TU games). Remarkably, it
is not only the unique such concept that satis�es additivity, e¢ ciency, symmetry, and the
null player property, but it can be calculated as a player�s average marginal contribution to
coalitions. Consequently, the Shapley value satis�es a very natural monotonicity condition
that conveys desirable incentive properties (Shubik, 1962): whenever a player�s marginal
contributions weakly increase, his payo¤ weakly increases. Conversely, Young (1985) shows
that this strong monotonicity property (alongside with e¢ ciency and symmetry) is charac-
teristic of the Shapley value. His characterization is also remarkable since it does without
additivity, which is a rather technical condition with little economic content.
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Strong monotonicity implies that a player�s payo¤only depends on his productivity mea-
sured by marginal contributions. Hence, the Shapley value re�ects individual productivity.
Modern societies and institutions, however, distribute their wealth not only based on indi-
vidual productivity but also on solidarity or egalitarian principles. In order to allow for such
principles, strong monotonicity must be waived.
van den Brink et al. (2013) reconcile monotonicity with egalitarianism. In particular,

they advocate weak monotonicity as a relaxation of strong monotonicity. Weak monotonicity
requires that a player�s payo¤weakly increases whenever his marginal contributions and the
grand coalition�s worth weakly increase. This principle is particularly attractive in view of
the cooperative context and the e¢ ciency assumption. According to e¢ ciency, the grand
coalition�s worth is to be shared. If this worth does not decrease, there is no need to
reduce any player�s payo¤. Thus, if in addition his individual productivity measured by his
marginal contributions to coalitions does not decrease, there is no reason to decrease the
player�s payo¤. van den Brink et al. (2013) show that a solution satis�es e¢ ciency, linearity
(or weak covariance), anonymity, and weak monotonicity if and only if it is an egalitarian
Shapley value.
The egalitarian Shapley values (Joosten, 1996) are the convex mixtures of the Shapley

value and the equal division value. That is, an egalitarian Shapley value redistributes the
Shapley payo¤s as follows: First, the Shapley payo¤s are taxed proportionally at a �xed
rate. Second, the total tax revenue is distributed equally among all players.
Our main result states that a value for games with more than two players satis�es

e¢ ciency, symmetry, and weak monotonicity if and only if it is an egalitarian Shapley value.
Cum grano salis, this is a generalization of Young�s characterization of the Shapley value.
Moreover, our main result entails that linearity (respectively weak covariance) is redundant
in the above characterizations of the egalitarian Shapley values by van den Brink et al.
(2013) if there are more than two players.
There are three other generalizations of Young�s result in the literature that should be

mentioned. Nowak and Radzik (1995) relax the symmetry assumption and give a characteri-
zation of the weighted Shapley values (Kalai and Samet, 1987). While their characterization
works within the same framework as ours, de Clippel and Serrano (2008) characterize a gen-
eralization of the Shapley value for coalitional games with externalities. Hart (2005) provides
a characterization of the Maschler-Owen consistent value for non-transferable utility games
in a way that generalizes Young�s theorem.
Young (1985) also stresses the interest in whether weaker monotonicity criteria are met

by other (non-linear) concepts as for example the nucleolus (Schmeidler, 1969) or the core
(Gillies, 1959). So far, to the best of our knowledge, no such criteria have been used in order
to characterize a popular solution concept or class of solution concepts.
The issue of solidarity is also addressed by Sprumont (1990) who suggests a value that

is characterized by Nowak and Radzik (1994) as the �solidarity value�. A class of general-
izations of this value is given by Casajus and Huettner (2014).
The remainder of this paper is organized as follows. In Section 2, we give basic de�nitions

and notation. In Section 3, we present our main result. Some remarks conclude this paper.
An appendix contains the proof of our main result and some complementary �ndings.
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2. Basic de�nitions and notation

A (TU) game is a pair (N; v) consisting of a non-empty and �nite set of players N and
a coalition function v 2 V (N) :=

�
f : 2N ! R j f (;) = 0

	
. Since we work within a �xed

player set, we frequently drop the player set as an argument. In particular, we address v 2 V
as a game. Subsets of N are called coalitions; v (S) is called the worth of coalition S;
v (S [ fig)� v (S) is called the marginal contribution of i 2 N to S � N n fig : Players
i; j 2 N are symmetric in v 2 V if v (S [ fig) = v (S [ fjg) for all S � N n fi; jg.
A value on N is a function ' that assigns a payo¤ vector ' (v) 2 RN to any v 2 V. The

Shapley value (Shapley, 1953) is given by

Shi (v) :=
X

S�Nnfig

(jN j � jSj � 1)! � jSj!
jN j! � (v (S [ fig)� v (S))

for all v 2 V and i 2 N .

3. Reconciling monotonicity with egalitarianism

Since the Shapley value is an average of marginal contributions, it satis�es a very natural
monotonicity condition due to Young (1985).

Strong monotonicity, Mo. For all v; w 2 V and i 2 N such that v (S [ fig) � v (S) �
w (S [ fig)� w (S) for all S � N n fig, we have 'i (v) � 'i (w).
Strong monotonicity guarantees that a player whose productivity weakly increases does not
end up with a lower payo¤. Indeed, this property together with e¢ ciency and symmetry,
below, is characteristic of the Shapley value.

E¢ ciency, E. For all v 2 V; we have
P

i2N 'i (v) = v (N).

Symmetry, S. For all v 2 V and i; j 2 N such that i and j are symmetric in v; we have
'i (v) = 'j (v).

E¢ ciency requires that the worth generated by the grand coalition is distributed among the
players without losses or gains. Symmetry demands that players who are equally productive
obtain the same payo¤s.

Theorem 1 (Young, 1985). The Shapley value is the unique value that satis�es e¢ cien-
cy (E), symmetry (S), and strong monotonicity (Mo).

Strong monotonicity implies that a player�s payo¤ only depends on his own productivity
measured by marginal contributions to coalitions. Therefore, the Shapley value can be
viewed as the measure of productivity of a player in a TU game.
In contrast, the equal division value (ED value) given by

EDi (v) :=
v (N)

jN j for all v 2 V and i 2 N
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distributes the worth generated by the grand coalition equally among the players. Hence,
this value expresses an extremely egalitarian form of solidarity. Clearly, the ED value violates
strong monotonicity. However, it satis�es weak monotonicity introduced by van den Brink
et al. (2013).

Weak monotonicity, Mo�. For all v; w 2 V and i 2 N such that v (N) � w (N) and
v (S [ fig)� v (S) � w (S [ fig)� w (S) for all S � N n fig, we have 'i (v) � 'i (w).
According to this property, a player�s payo¤ weakly increases whenever his marginal con-
tributions and the grand coalition�s worth weakly increase. This property weakens strong
monotonicity in a plausible way. Whenever the worth generated by the grand coalition
weakly increases, no player necessary has to loose. If in addition a player�s productivity
weakly increases, this player�s payo¤ should not decrease.
The egalitarian Shapley values (Joosten, 1996) Sh�; � 2 [0; 1] given by

Sh�i (v) = � � Shi (v) + (1� �) � EDi (v) for all v 2 V and i 2 N (1)

also satisfy weak monotonicity. Indeed, van den Brink et al. (2013) use this property in order
to single out the egalitarian Shapley values from the class of linear, e¢ cient, and symmetric
solutions.1

Linearity, L. For all v; w 2 V and � 2 R, we have ' (v + w) = ' (v)+' (w) and ' (� � v) =
� � ' (v).2

Theorem 2 (van den Brink et al., 2013). A value ' satis�es e¢ ciency (E), linearity
(L), symmetry (S), and weak monotonicity (Mo�) if and only if there exists an � 2 [0; 1]
such that ' = Sh�.

Inspired by Young (1985), we now investigate the class of values that satisfy e¢ ciency,
symmetry, and weak monotonicity. This is of interest for at least two reasons. First, it is
di¢ cult to motivate linearity in economic terms. Second, Young�s characterization of the
Shapley value shows that strong monotonicity essentially re�ects the nature of the Shapley
value. Cum grano salis, it turns out that weak monotonicity re�ects the nature of the
egalitarian Shapley values in the same vein.

Theorem 3. For jN j 6= 2, a value ' satis�es e¢ ciency (E), symmetry (S), and weak
monotonicity (Mo�) if and only if there exists an � 2 [0; 1] such that ' = Sh�.

1Actually, they employ anonymity instead of symmetry. Yet, Malawski (2008, Theorem 2) shows that
e¢ ciency, linearity, and symmetry already entail anonymity: For all v 2 V; i 2 N; and all bijections
� : N ! N , we have '�(i)

�
v � ��1

�
= 'i (v), where v � ��1 2 V is given by v � ��1 (S) = v

�
��1 (S)

�
;

S � N:
2For all v; w 2 V and � 2 R; the coalition functions v + w 2 V and � � v 2 V are given by (v + w) (S) =

v (S) + w (S) and (� � v) (S) = � � v (S) for all S � N .
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The proof of Theorem 3 can be found in Appendix A. Appendix B contains the coun-
terexample to our characterization for jN j = 2: The non-redundancy of our characterization
for jN j > 2 is indicated in Appendix C.
Note that Theorem 3 implies Theorem 1 for jN j 6= 2 since Sh� satis�es strong monotonic-

ity only if � = 1. Moreover, Theorem 3 entails that linearity is redundant in the characteri-
zation of the egalitarian Shapley values by Theorem 2 for jN j > 2.3 The example presented
in Appendix B establishes that linearity is not implied by e¢ ciency, symmetry, and weak
monotonicity if jN j = 2.
van den Brink et al. (2013, Theorem 4.5) provide another characterization of the egali-

tarian Shapley values for jN j > 2 using e¢ ciency, anonymity, weak monotonicity, and weak
covariance, below.

Weak covariance. For all v 2 V; i 2 N; j; k 2 Nnfig ; and � 2 R, we have 'j
�
v + � � ufig

�
�

'j (v) = 'k
�
v + � � ufig

�
� 'k (v) ; where ufig 2 V is given by ufig (S) = 1 if i 2 S and

ufig (S) = 0 if i 2 N n S for all S � N:
As a relaxation of the fairness property4 due to van den Brink (2001), weak covariance might
have more economic appeal than linearity. Weak covariance states that the payo¤s of two
players j and k are changed by the same amount if a third player i�s marginal contributions
to coalitions are changed by a �xed amount �. This also is the case if j and k are not
symmetric. Then, weak covariance directly requires unequals to be a¤ected equally. In this
sense, weak covariance is not as innocuous as it might seem at �rst glance. Also note that
linearity neither implies nor is implied by weak covariance. In view of Theorem 3, however,
weak covariance is redundant in the characterization of the egalitarian Shapley values by
van den Brink et al. (2013, Theorem 4.5).5

The hypothesis of weak monotonicity consists of two conditions. Separating these condi-
tions results in the notions of strong monotonicity and grand coalition monotonicity, below.

Grand coalition monotonicity, GMo. For all v; w 2 V and i 2 N such that v (N) �
w (N), we have 'i (v) � 'i (w) :
Grand coalition monotonicity requires that a player�s payo¤ weakly increases whenever the
worth of the grand coalition weakly increases. It is clear that the ED-value is the only
egalitarian Shapley value that satis�es grand coalition monotonicity. van den Brink (2007,
Theorem 3.3) uses a weaker property� coalitional monotonicity6� in order to characterize
the ED-value. This yields the following corollary.

Corollary 4. The ED-value is the unique value that satis�es e¢ ciency (E), symmetry (S),
and grand coalition monotonicity (GMo).

3The example given by van den Brink et al. (2013) in order to show the logical independence of linearity
from the other axioms does not satisfy weak monotonicity.

4Fairness: For all v; w 2 V and i; j 2 N such that i and j are symmetric in w, we have 'i (v + w)�'i (v) =
'j (v + w)� 'j (v).

5The example given by van den Brink et al. (2013) in order to show the logical independence of weak
covariance from the other axioms does not satisfy weak monotonicity.

6Coalitional monotonicity: For all v; w 2 V and i 2 N such that v (S) � w (S) for all S � N; S 3 i, we
have 'i (v) � 'i (w).
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4. Concluding remarks

In this paper, we suggest a new characterization of the class of egalitarian Shapley values
using e¢ ciency, symmetry, and weak monotonicity. This characterization
corresponds to the characterization of the egalitarian Shapley values given by Casajus and
Huettner (2013) as Young�s (1985) characterization of the Shapley value corresponds to the
original characterization given by Shapley (1953) himself.
The monotonicity property of the Shapley value is often used as an argument to support

the application of the Shapley value. Moreover, characterizations of related solution con-
cepts essentially rely on Young�s theorem (e.g. Maniquet, 2003; Bergantiños and Vidal-Puga,
2007). Therefore, it might be interesting to study the consequences of a relaxation of the
property derived from strong monotonicity in such applications.

Appendix A. Proof of Theorem 3

First, we provide some further de�nitions and notation. For any set of players N; let
n := jN j : For v 2 V; let the equivalence relation �v on N be given as follows. For all
i; j 2 N , we have i �v j if i and j are symmetric in v: For v 2 V; let N (v) denote the
partition of N induced by �v. Set

#v := max
C2N (v)

jCj : (A.1)

A game v 2 V is called symmetric if #v = n. Let V� = fv 2 V j#v = ng denote the set of
symmetric games. Set RN := ff : N ! Rg and i 7! xi := x (i) for all i 2 N . For x 2 RN ;
the modular game mx 2 V is given by mx (S) =

P
i2S xi for all S � N . Note that mx = ufig

if xi = 1 and xj = 0 for all j 2 N n fig. The null game 0 2 V� is given by 0 (S) = 0 for all
S � N:
By van den Brink et al. (2013, Theorem 4.3), Sh�; � 2 [0; 1] obeys E, S, andMo�. Let

the value ' satisfy E, S, and Mo�. By E, ' = Sh� for all � 2 [0; 1], if n = 1. Let now
n > 2: The remainder of the proof consists of two parts. First, we establish with a series
of claims that there is some � 2 [0; 1] such that for all symmetric games v 2 V�; i 2 N ,
j 2 N n fig, and x 2 RN such that xj = 0; we have 'i (v +mx) � 'j (v +mx) = � � xi.
Second, we use this insight in order to show ' (v) = Sh� (v) if #v = n � 1 and establish
' (v) = Sh� (v) by induction on #v.

Claim 1, C1. For v 2 V�, there exists a mapping F vi : R2 ! R for each i 2 N such that

'i (v +mx) = F
v
i

 
xi;
X
`2N

x`

!
for all x 2 RN : (A.2)

Mo� implies 'i (v +mx) = 'i (v +my) for i 2 N and x; y 2 RN whenever xi = yi andP
i2N xi =

P
i2N yi: This is tantamount to C1.

Claim 2, C2. F vi does not depend on the choice of i 2 N , i.e., for all v 2 V� and i; j 2 N;
we have F vi = F

v
j =: F

v.
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Let v 2 V�, a; c 2 R; x; y 2 RN ; i 2 N; and j 2 N n fig be such that

xi = a and xk =
c� a
n� 1 for all k 2 N n fig (A.3)

and
yj = a and yk =

c� a
n� 1 for all k 2 N n fjg : (A.4)

Hence, we have

L := '` (v +mx)
(A.3),(A.4),Mo�

= '` (v +my) for all ` 2 N n fi; jg (A.5)

'j (v +mx)
(A.3),S
= L (A.6)

'i (v +my)
(A.4),S
= L (A.7)

and therefore

F vi (a; c)
(A.2),(A.3)
= 'i (v +mx)

E,(A.5),(A.6),(A.7)
= (v +mx) (N)� (n� 1) � L

(A.3),(A.4)
= (v +my) (N)� (n� 1) � L

E,(A.5),(A.6),(A.7)
= 'j (v +my)

(A.2),(A.4)
= F vj (a; c) ;

which proves C2.
For c 2 R and v 2 V�, the mapping �v;c : R! R is de�ned by

�v;c (a) := F v (a; c)� F v (0; c) for all a 2 R: (A.8)

Claim 3, C3. For all a; c; � 2 R, we have �v;c (� � a) = � � �v;c (a).
By Mo�, the mappings F v have the following property. For all a; a0; c; c0 2 R such that

a � a0 and c � c0; we have
F v (a; c) � F v (a0; c0) : (A.9)

Fix i; j 2 N; i 6= j: For a; b; c 2 R; let x; y 2 RN be given by xi = a; xj = b; yi = a + b;
yj = 0, and xk = yk = c�a�b

n�2 for all k 2 N n fi; jg. For all v 2 V�, we have

F v (a; c) + F v (b; c) + (n� 2) � F v
�
c� a� b
n� 2 ; c

�
(A.2),C2
=

X
`2N

'` (v +mx)

E
=
X
`2N

'` (v +my)

(A.2),C2
= F v (a+ b; c) + F v (0; c) + (n� 2) � F v

�
c� a� b
n� 2 ; c

�
: (A.10)
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By (A.8) and (A.10), we obtain

�v;c (a) + �v;c (b) = �v;c (a+ b) for all a; b; c 2 R: (A.11)

This already entails that �v;c (� � a) = � � �v;c (a) for all a 2 R; � 2 Q: By (A.9) and (A.8),
the mapping �v;c is monotonic, i.e., we have �v;c (a) � �v;c (b) for all a; b 2 R such that
a � b: Since Q is a dense subset of R, (A.11) entails C3.
Claim 4, C4. �v;c (1) does not depend on the choice of c, i.e., �v;c (1) = �v;c0 (1) =: �v (1)
for all c; c0 2 R:
Let c; c0 2 R; c > c0: Suppose �v;c (1) 6= �v;c0 (1) : Then, we have

F v (a; c)� F v (a; c0) (A.8)= �v;c (a)� �v;c0 (a) + F v (0; c)� F v (0; c0)
C3
= a �

�
�v;c (1)� �v;c0 (1)

�
+ F v (0; c)� F v (0; c0)

for all a 2 R: Hence, one can �nd some a 2 R such that F v (a; c) < F v (a; c0) ; contradicting
(A.9).

Claim 5, C5. �v (1) does not depend on the choice of v 2 V�, i.e., �v (1) = �w (1) =: � (1)
for all v; w 2 V�.
Let v; w 2 V� and i; j 2 N; i 6= j: One can choose z 2 V� such that z (N) � v (N) ;

z (N) � w (N) ; and z (S [ fig) � z (S) � v (S [ fig) � v (S) and z (S [ fig) � z (S) �
w (S [ fig)� w (S) for all S � N n fig : Suppose �z (1) 6= �v (1). Then, we have

'i
�
z + � � ufig + (1� �) � ufjg

�
� 'i

�
v + � � ufig + (1� �) � ufjg

�
� (F z (0; 1)� F v (0; 1))

(A.2),C2,(A.8),C3,C4
= � � (�z (1)� �v (1)) for all � 2 R.

Hence, one can �nd some � 2 R such that 'i
�
z + � � ufig

�
< 'i

�
v + � � ufig

�
; contradicting

Mo�. Thus, �z (1) = �v (1) : Analogously, one shows �z (1) = �w (1). This establishes C5.
Set

� := � (1) : (A.12)

Claim 6, C6. � 2 [0; 1].
We have

�
(A.12)
= �(1)

C5,C4
= �0;1 (1)

C2,(A.8)
= F 0 (1; 1)� F 0 (0; 1) : (A.13)

By (A.13) and (A.9), � � 0: For all i; j 2 N; j 6= i, we have

'i
�
ufig
�
� 'j

�
ufig
� (A.2),C2

= F 0 (1; 1)� F 0 (0; 1) (A.13)= �: (A.14)

Since '`
�
ufig
� Mo�

� '` (0)
E,S
= 0 for ` 2 N , we obtain

'i
�
ufig
�
� 'j

�
ufig
� E
= 1�

X
`2Nnfig

'`
�
ufig
�
� 'j

�
ufig
�
� 1;
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i.e., � � 1.
Claim 7, C7. For all v 2 V�; i 2 N , j 2 N n fig, and x 2 RN such that xj = 0, we have
'i (v +mx)� 'j (v +mx) = � � xi.
With v; i; j; and x as in the claim, set X :=

P
`2N x`. Then, we have

'i (v +mx)� 'j (v +mx)

(A.2),C2,(A.8)
= �v;X (xi) + F

v (0; X)�
�
�v;X (0) + F v (0; X)

�
C3,C4,C5,C6

= � � xi;

which establishes C7.
Fix � 2 [0; 1]. It remains to show that there is at most one value ' that satis�es E, S,

Mo�, and 'i
�
ufig
�
� 'j

�
ufig
�
= � for i 2 N and j 2 N n fig. Let ' be such a value. We

show ' (v) = Sh� (v) by induction on #v de�ned in (A.1).

Induction basis.We show that ' (v) = Sh� (v) for all v 2 V such that #v 2 fn; n� 1g :
For#v = n, this is immediate from (1), E, and S. Let now v 2 V be such that#v = n�1;

i.e.,N (v) = fN n fig ; figg for some i 2 N: By Pintér (2012, De�nition 3.2, Proposition 3.6),
there is some w 2 V� such that v (S [ fig) � v (S) = w (S [ fig) � w (S) for S � N n fig.
Fix k 2 N n fig. Let z 2 V be given by

z := w + (v (N)� w (N)) � ufkg: (A.15)

This implies z (N) = v (N) and v (S [ fig) � v (S) = z (S [ fig) � z (S) for S � N n fig :
Hence, we have

'i (v)
Mo�
= 'i (z) and Sh�i (v)

Mo�
= Sh�i (z) : (A.16)

By w 2 V�, (A.15), and C7, we obtain

'k (z)� 'i (z) = � � (v (N)� w (N)) : (A.17)

By (A.15) and S, we get 'i (z) = '` (z) for all ` 2 N n fkg. Hence,

'k (z) + (n� 1) � 'i (z)
E
= z (N)

(A.15)
= v (N) : (A.18)

Solving (A.17) and (A.18) for 'i (z) yields

'i (z) =
w (N)

n
+ (1� �) � v (N)� w (N)

n

(1)
= Sh�i (z) : (A.19)

By (A.16) and (A.19), 'i (v) = Sh
�
i (v). Since any two players in N n fig are symmetric in

v and by E and S, we also have '` (v) = Sh�` (v) for ` 2 N n fig.
Induction hypothesis, IH. Suppose ' (w) = Sh� (w) for all w 2 V such that #w � t;
t < n.
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Induction step.We show that ' (v) = Sh� (v) for all v 2 V such that #v = t� 1.
Let v 2 V be such that #v = t � 1. Note that #v � n � 2: Fix C 2 N (v) such

that jCj = #v: Fix i; j 2 N n C; i 6= j. By Pintér (2012, De�nition 3.2, Proposition 3.6),
there is some w 2 V such that v (S [ fig) � v (S) = w (S [ fig) � w (S) for S � N n fig
and such that any two players in C [ fig are symmetric in w, i.e., #w � t: Let z 2 V
be given by z := w + (v (N)� w (N)) � ufjg: This implies #z � #w; z (N) = v (N) ; and
v (S [ fig)� v (S) = z (S [ fig)� z (S) for S � N n fig : Hence, we have

'i (v)
Mo�
= 'i (z)

IH
= Sh�i (z)

Mo�
= Sh�i (v) :

Since i 2 N nC was chosen arbitrarily, we have '` (v) = Sh�` (v) for ` 2 N nC: Since any two
players in C are symmetric in v and by E and S, this entails '` (v) = Sh�` (v) for ` 2 C: �

Appendix B. Counterexample to Theorem 3 for n = 2

Theorem 3 fails for n = 2: Consider the redistribution rule '~ on N = f1; 2g given by

�
'~1 (v) ; '

~
2 (v)

�
=

8>>>>>><>>>>>>:

(Sh1 (v) ; Sh2 (v)) ; Sh1 (v) � 0 and Sh2 (v) � 0;
(0; v (N)) ; Sh1 (v) < 0 and Sh2 (v) > 0 ^ v (N) � 0;
(v (N) ; 0) ; Sh1 (v) < 0 and Sh2 (v) > 0 ^ v (N) < 0;
(Sh1 (v) ; Sh2 (v)) ; Sh1 (v) � 0 and Sh2 (v) � 0;
(0; v (N)) ; Sh1 (v) > 0 and Sh2 (v) < 0 ^ 0 � v (N) ;
(v (N) ; 0) ; Sh1 (v) > 0 and Sh2 (v) < 0 ^ v (N) > 0

for all v 2 V (N) : It is straightforward to show that '~ meets E, S, andMo�.

Appendix C. Non-redundancy of Theorem 3 for n > 2

Our characterization is non-redundant for n > 2. The value 'E given by 'Ei (v) = 0 for
all v 2 V and i 2 N satis�es S and Mo� but not E. Fix�{ 2 N: The value 'S given by
'S�{ (v) = v (N) and '

S
i (v) = 0 for all v 2 V and i 2 N n f�{g satis�es E andMo� but not S.

The value 'Mo� given by 'Mo� (v) = 2 � Sh (v)� ED (v) for all v 2 V satis�es E and S but
notMo�.
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