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Abstract

We consider manipulations in the context of coalitional games, where a

coalition aims to increase the total payoff of its members. An allocation rule is

immune to coalitional manipulation if no coalition can benefit from internal re-

allocation of worth among its subcoalitions (reallocation-proofness), and if no

coalition can benefit from a lower worth (weak coalitional monotonicity). Re-

placing additivity in Shapley’s original characterization by these requirements

yields a new foundation of the Shapley value, i.e., it is the unique efficient and

symmetric allocation rule that awards nothing to a null player and is immune

to coalitional manipulations. We further find that for efficient allocation rules,

reallocation-proofness is equivalent to constrained marginality, a weaker vari-

ant of Young’s marginality axiom. Our second characterization improves upon

Young’s characterization by weakening the independence requirement intrinsic

to marginality.
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1 Introduction

In recent years, cooperative game theory and its solution methods have expanded be-

yond traditional realms like cost-sharing (Shubik, 1962; Littlechild and Owen, 1973;

Tijs and Driessen, 1986; Gopalakrishnan et al., 2021) and property rights remuner-

ation (Hart and Moore, 1990; Tauman and Watanabe, 2007). Their application in

statistics for identifying important variables (Lipovetsky and Conklin; Shorrocks,

2012), in machine learning for interpreting prediction models (Lundberg and Lee,

2017; Lundberg et al., 2020), and in marketing for attributing online advertisers’ im-

pact on customer conversion (Dalessandro et al.; Berman; Singal et al., forthcoming)

demonstrate that today, allocation rules for cooperative games are routinely com-

puted and implemented (Grömping, 2015; Google; GitHub). The most prominent

allocation rule for these applications is the Shapley value, which rewards (punishes)

a player for a higher (lower) marginal contributions. In fact, this strong mono-

tonicity property is characteristic of the Shapley value (Young, 1985), which is com-

monly cited as a compelling reason for the widespread adoption of the Shapley value

(Shorrocks, 2012; Huettner and Sunder, 2012; Lundberg and Lee, 2017). While strong

monotonicity ensures that individuals have an incentive to work towards a common

goal, less is known about the incentives of groups of players.

In this paper, we study coalitional manipulations , i.e., modifications of a game

with the intention to increase the total payoff accruing to the members of a coalition

even as the coalition does not create any additional surplus. We introduce axioms

ensuring that allocation rules are immune to such manipulations.

A most basic requirement is weak coalitional monotonicity (Zhou, 1991), which

ensures that no coalition shall benefit from having a lower worth,1 while all else

remains the same – for example by underreporting their joint contribution to the

worth of the grand coalition or by a binding pre-game agreement that reduced their

worth understood as the coalition’s outside option.

Inspired by Moulin (1987), Moulin (1987), Thomson, Ju et al. (2007), and Ju

(2013), we further define reallocation-proofness as the requirement that no coalition

shall benefit from an internal reallocation of surplus. Here, internal reallocation

1Following established nomenclature, we refer to the number v(S) that is assigned to coalition
S in a coalitional game as the “worth” of this coalition. We use the term “value” when referring to
a particular, well-known allocation rule, such as the Shapley value or the equal division value.
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means that a coalition manipulates the original game without changing (i) the worth

of the manipulating coalition itself, nor (ii) the worth of coalitions of outside players,

nor (iii) the synergies between players from the manipulating coalition with outside

players. For example a manipulating coalition may be able to misrepresent how its

subcoalitions contribute towards the worth of the grand coalition or use binding pre-

game agreements on how to split up the coalitions’ worth among subcoalitions should

the grand coalition fail to form – under reallocation proofness, such schemes should

not improve the aggregate payoffs to the members of the manipulating coalition.

In the context of statistics, it is not plausible that such a manipulative initiative

is the result of features or other model entities “becoming active”. Nonetheless,

immunity to manipulation is still a plausible requirement in the sense that it prevents

a modeler or statistician to inflate the importance of a set of features or a set of model

components through a manipulation of the game. This is particular important if the

model is otherwise noninterpretable or treated as a blackbox, and its understanding

mainly relies on allocation rules from cooperative game theory like the Shapley value.

Consider for instance an XGBoost trained model that predicts a person’s health

condition based on interventions features (e.g., medicine vs. placebo, special diet

plan vs. unregulated diet) and on standard individual characteristics features (e.g.,

an individual’s weight). Unlike a regression model, XGBoost does not give coeffi-

cients that show how much a feature’s value affects the dependent variable. Instead,

this can be done by the Shapley value, which breaks down the contribution of each

feature to a person’s predicted health condition (Lundberg et al., 2020). A predic-

tion model might appear more desirable to the modeler, say a pharmaceutical com-

pany, the higher the sum of Shapley values of interventions features. Reallocation-

proofness prevents that the modeler could inflate the importance of interventions fea-

tures through a manipulation, say through different feature engineering, that merely

shift explanatory worth from one interventions features to another.

Our main result states that the Shapley value is the unique allocation rule that

satisfies

• reallocation-proofness,

• weak coalitional monotonicity,

• efficiency (the sum of payoffs equals the worth of the grand coalition),
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• null player (a player’s payoff is zero if this player’s presence does not affect the

worth of any coalition), and

• symmetry (interchangeable players get the same payoff).

The result holds true both on the domain of superadditive games, and on the un-

restricted domain of all (possibly not superadditive) cooperative games. The latter

might be appropriate, e.g., for applications in statistics.

Notably, the nucleolus Schmeidler (1969) satisfies all these properties except

reallocation-proofness. Hence, while the difference between the Shapley value and

the nucleolus is often pinned down to the fact that the Shapley value is monotonic

while the nucleolus is in the stable, our result offers a new perspective. We argue that

the Shapley value guards against coalitions manipulating within a game, whereas the

nucleolus (and other core selectors) guards against coalitions deviating by braking

away.

If we restrict attention to efficient allocation rules, then Young’s strong mono-

tonicity ensures immunity to manipulation. Specifically, strong monotonicity im-

plies weak coalitional monotonicity. Moreover, an efficient allocation rule satisfies

reallocation-proofness if and only if it satisfies constrained marginality. The latter

requires that a player’s payoff remains the same if both this player’s marginal con-

tributions and the worth of the grand coalition remain the same. Since constrained

marginality cannot be applied if the worth of the grand coalition changes, it is a

weaker assumption than Young’s marginality axiom (an undirected and weaker vari-

ant of strong monotonicity). For example, note that the equal division value satisfies

constrained marginality but not marginality (nor strong monotonicity).

We obtain another characterization of the Shapley value by means of constrained

marginality, weak coalitional monotonicity, efficiency, null player, and symmetry.

Our second characterization of the Shapley value sheds light on Young’s character-

ization by replacing strong monotonicity by the requirements of weak coalitional

monotonicity, null player (an immediate implication of strong monotonicity given

efficiency and symmetry), and constrained marginality.

According to constrained marginality, a player’s payoff derives from this player’s

marginal contributions, but may also depend on the surplus created by other players.

This notably weakens the independence requirement intrinsic to Young’s marginality.
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To see this more lucidly, note that constrained marginality allows a player’s payoff

to depend on other players’ marginal contributions in arbitrary ways, provided that

changes in other players’ marginal contributions also affect the worth of the grand

coalition. Only if a player’s marginal contributions as well as the worth created by the

other players remain the same, i.e., only if a player’s marginal contributions remain

the same in absolute terms and relative to the productivity of the other players,

only then does constrained marginality mandate that the player’s payoff remains the

same.

The paper is organized as follows. In Section 2, we illustrate our axioms with

a basic example, and provide formal definitions. In Section 3, we present the main

result. In Section 4, we draw a comparison with Young’s characterization. Section 5

concludes. The appendix contains all proofs and counterexamples, demonstrating

the axioms’ independence.

2 Problem formulation

We first illustrate weak coalitional monotonicity and reallocation-proofness by a sim-

ple attribution problem in the context of advertising. Then, we provide basic defini-

tions and a establish a formal definition of our new axioms.

2.1 Example with Three Players

A company uses three advertisement services to convert customers: search ads (s),

display ads (d), and email ads (e). The (joint) conversion scores for the respective

services are given in Figure 1a. In the language of cooperative games, these corre-

spond to the worth of the various coalitions. In this example, email by itself can

be perceived as spam and has a negative impact on customer conversion, resulting

in a score of −10. However, it works well in conjunction with the other services,

yielding scores of 40 and 1 in conjunction with search and display ads, respectively.

Combining all three services amounts to a conversion score of 54. For simplicity, we

assume no synergies between display and search ads.

Consider the coalition of email and search (or rather their responsible managers)

and imagine that they seek to misrepresent contributions, thus modifying the coali-

5



d

e

5

¡10

20s25

54 40

1

(a) Original game;
the Shapley value as-
signs the following
payoffs:
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(b) {s, e} manip-
ulates by internal
reattribution, keep-
ing synergies with
the outsider d con-
stant:
Shd = 9
Shs = 30
She = 15
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1
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(c) {s, e} manipu-
lates by a reattribu-
tion that affects syn-
ergies with the out-
sider d:
Shd = 7
Shs = 34
She = 13

Figure 1: Manipulations by coalition {s, e}; changes compared to original val-
ues in (a) are bold; the Shapley value is immune to manipulation by internal
reattribution that do not affect synergies with outsiders, i.e., it satisfies reallocation-
proofness, which ensures that s and e together get no higher payoffs in (b) than in
(a); the Shapley value is susceptible to manipulation by reallocation that affects syn-
ergies with outsiders, i.e., it fails strong reallocation-proofness, which would ensure
that s and e together get no higher payoffs in (c) than in (a).

tional game, in order to increase their total payoff. Suppose that the joint per-

formance of email and search includes the positive effect on conversion of search-

triggered follow-up emails to the amount of, say, 12. If this effect is instead ascribed

to email directly, then this yields the game of Figure 1b. Note that for such a ma-

nipulation to be interpreted as a reallocation among coalition members, it should

have no impact on the total worth of the manipulating coalition, i.e., on the joint

conversion score of email and search; it does however increase the joint conversion

score of email and display, as the synergies between these services remain unchanged

while additional conversions, now ascribed to email alone, are included in conversions

ascribed to display and/or email ads. Reallocation-proofness requires that such an

internal reallocation within the coalition of email and search shall not increase the

total payoff that accrues to email and search.

Next, consider the case when the manipulation by the coalition email and search

affects the synergy between email and display ads as in Figure 1c. In that case,
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a coalitional manipulation affects the marginal contributions of the outside players

(here, the marginal contribution of d to e decreases by 12). Reallocation-proofness

does not apply in this case. A stronger assumption, called strong reallocation-proofness,

precludes an increase in a total payoff of a manipulating coalition even when the

coalition is able to affect the marginal contributions of outsiders. The Shapley value

does not satisfy strong reallocation-proofness (in the example, the aggregate Shap-

ley values of email and search increase by 2). In fact, turns out that the equal

division value is the only efficient and symmetric allocation rule that satisfies strong

reallocation-proofness.

Finally, we deal with the situation in which the manipulating coalition is ceteris

paribus able to lower its conversion score, say by underreporting its performance,

as in Figure 2b. Weak coalitional monotonicity requires that this should not be

advantageous to the manipulating coalition, i.e., the total payoff to email and search

shall not increase from (a) to (b).

d
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(a) Original game
and Shapley values:
Shd = 9
Shs = 36
She = 9

d
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54 34

(b) {s, e} manip-
ulates by underre-
porting:
Shd = 11
Shs = 35
She = 8

Figure 2: Manipulation by coalition {s, e}; changes compared to original values
in (a) are bold; the Shapley value is immune to manipulation by underreporting,
i.e., it satisfies weak coalitional monotonicity, which ensures that s and e together
get no higher payoffs in (b) than in (a).

2.2 Basic definitions

We consider coalitional games v: 2N → R, v(∅) = 0, where N denotes the player set

and v(S) the worth of coalition S ⊆ N . The space of all coalitional games on N is
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denoted by V̄. A game v is superadditive if v(S ∪ T ) ⩾ v(S) + v(T ) for all S, T ⊆ N

such that S ∩T = ∅. The collection of all superadditive coalitional games is denoted

Vs. Moving forward, we simply refer to the domain of games by V, where the results
in this paper are correct if we limit all definitions and the validity of the axioms

either to the superadditive domain (read V = Vs), or if we consider the unrestricted

domain (read V = V̄).
An allocation rule φ maps every coalitional game into payoffs, i.e., φ determines

for all v ∈ V, and i ∈ N a payoff φi(v) ∈ R. The equal division value van den Brink

(2007) assigns to each player the same share of the grand coalition’s worth,

EDi(v) = v(N)
|N | . (1)

The Shapley value Shapley (1953) assigns to each player its average marginal contri-

bution,

Shi(v) =
∑

S⊆N\{i}
(|N |−1−|S|)!|S|!

|N |! (v(S ∪ {i})− v(S)). (2)

The Shapley value satisfies the following standard axioms – and is characterized by

them.

Additivity, A. For all v, w ∈ V, we have φ(v + w) = φ(v) + φ(w).2

Efficiency, E. For all v ∈ V, we have
∑

i∈N φi(v) = v(N).

Null Player, N. For all v ∈ V and all i ∈ N we have

v(S ∪ {i}) = v(S) for all S ⊆ N \ {i} ⇒ φi(v) = 0.

Symmetry, S. For all v ∈ V and all i, j ∈ N we have

v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j} ⇒ φi(v) = φj(v).

Theorem 1 (Shapley (1953)) An allocation rule φ satisfies additivity (A), effi-

ciency (E), null player (N), and symmetry (S) if and only if φ is the Shapley value.

While additivity is a desirable technical property, its normative appeal is arguably

weaker than that of the other axioms. We next introduce axioms, based on which we

will provide a characterization of the Shapley value that does not rely on additivity.

2Here (v + w) ∈ V is defined by (v + w)(S) = v(S) + w(S) for all S ⊆ N .
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2.3 Axioms guaranteeing immunity to manipulation

We consider manipulations by coalitions that can be interpreted as reallocations

among its members. Hence, (i) the worth of coalitions that consist only of out-

side players should be unchanged by the manipulation. Moreover, a reallocations

among its members should chancel out for the manipulating coalition as a whole,

i.e., (ii) the worth of the manipulating coalition itself, as well as the worth of every

larger coalition, should also remain unchanged. The strongest conceivable notion of

reallocation-proofness would thus demand that the total payoffs accruing to mem-

bers of a manipulating coalition do not increase between any two games as long as

(i) and (ii) are satisfied.

Strong Reallocation-proofness, R+. An allocation rule φ satisfies strong reallocation-

proofness if for all v, w ∈ V and all M ⊆ N , we have v(T ) = w(T )

for all T ⊆ N \M
and for all T ⊇ M

 ⇒
∑
i∈M

φi(v) ⩾
∑
i∈M

φi(w).

This strong notion of reallocation-proofness turns out to be rather restrictive. In

particular, we find that the equal division value is the only efficient and symmetric

allocation rule that satisfies strong reallocation-proofness.

Proposition 1 Let |N | ≠ 2. An allocation rule φ satisfies symmetry (S), efficiency

(E), and strong reallocation-proofness (R+) if and only if φ is the equal division

value.

Proposition 1, thus begs the question how to adjust strong reallocation-proofness

in a way that preserves its intuitive interpretation of preventing profitable realloca-

tions. A natural variation is to further reduce the set of feasible manipulations. Since

a manipulation seems more plausible if it remains unnoticed by the outside players,

we shall limit a coalition’s manipulation to internal reallocation, i.e., reallocations

that have no impact on outside players’ contributions. Conversely, where manipula-

tions change contributions of outside players, reallocation-proofness is mute.

Reallocation-proofness, R. An allocation rule φ satisfies reallocation-proofness
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if for all v, w ∈ V and all M ⊆ N , we have v(M) = w(M) and

v(S ∪ T )− v(S) = w(S ∪ T )− w(S)

for all S ⊆ M and for all T ⊆ N \M

 ⇒
∑
i∈M

φi(v) ⩾
∑
i∈M

φi(w).

Reallocation-proofness requires that the total payoff to a coalition does not in-

crease whenever this coalition reattributes worth internally, i.e., such that (i) the

worth of the manipulating coalition remains the same; (ii) the worth of every coali-

tion of outside players remains the same (S = ∅); and (iii) the surplus created by

outside players remains the same.

If we limit the analysis to the domain of superadditive games, V = Vs, then both

the original game v and the manipulated game w have to be superadditive. This

additional domain restriction means that reallocation-proofness only applies if the

worth attributed byM to its subcoalitions is not too large, i.e., w(M ′)+w(M \M ′) ⩽

v(M) for all M ′ ⊆ M . In particular, a manipulating coalition cannot arbitrarily

inflate the worth of subcoalitions or individual members.

Note that reallocation-proofness is implied by efficiency for |N | = 2. Moreover,

moving from strong reallocation-proofness to a weaker version enlarges the set of

reasonable allocation rules beyond the equal division value. For example, it now

includes the Shapley value.3

Lemma 1 The Shapley value satisfies reallocation-proofness (R).

Finally, we want to rule out that a coalition can benefit from a lower worth while

the game is otherwise unchanged. Formally, this is guaranteed by the following

property, introduced by Zhou (1991).

Weak Coalitional Monotonicity, W. An allocation rule φ satisfies weak coali-

tional monotonicity if for all v, w ∈ V and M ⊆ N , we have:

[v(M) ⩾ w(M) and v(S) = w(S) for all S ̸= M ] ⇒
∑
i∈M

φi(v) ⩾
∑
i∈M

φi(w).

Weak coalitional monotonicity requires that the total payoff to a coalition shall not

3For further examples of rules satisfying reallocation-proofness, see A.4.
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increase whenever the worth of this coalition weakly decreases, while the worth of

all other coalitions remains the same. It is implied by coalitional monotonicity—a

property considered essential by Shubik (1962) to prevent “corporate idiocy” in the

context of cost allocation.4

Coalitional Monotonicity, CM. An allocation rule φ satisfies coalitional mono-

tonicity if for all v, w ∈ V and M ⊆ N , we have:

[v(M) ⩾ w(M) and v(S) = w(S) for all S ̸= M ] ⇒ φi(v) ⩾ φi(w).

Note, however, that weak coalitional monotonicity is a considerably weaker as-

sumption since its implication requires an increase only for the total payoff of the

manipulating coalition, not for each individual player. Hence, it is not only at least

as plausible and desirable, but it is further satisfied by virtually all allocation rules

considered in the literature. In particular, weak coalitional monotonicity is compat-

ible with core selectors such as the nucleolus (Schmeidler, 1969), which fails other

monotonicity principles such as coalitional monotonicity or monotonicity in the ag-

gregate (Megiddo, 1974). Indeed, no core selector satisfies coalitional monotonicity

(Young, 1985).5

3 Immunity to manipulation is characteristic of

the Shapley value

Our main result states that preventing coalitional manipulation along the lines of

the axioms motivated in the previous section leaves us with a unique allocation rule:

the Shapley value.

Theorem 2 Let |N | ̸= 2. The Shapley value is the unique allocation rule satisfying

symmetry (S), null player (N), efficiency (E), weak coalitional monotonicity (W),

and reallocation-proofness (R).

4Note that the Shapley value satisfies coalitional monotonicity, so that weak coalitional mono-
tonicity can be replaced by coalitional monotonicity in our characterizations Theorems 2 and 4.

5The core itself satisfies a set-valued analogue of weak coalitional monotonicity: Consider v, w ∈
V, and M ⊆ N s.t. v(M) ⩾ w(M), and v(S) = w(S) for all S ̸= M . If Core(v),Core(w) ̸= ∅, then
for every x ∈ Core(w) we have either x ∈ Core(v) or

∑
i∈M yi >

∑
i∈M xi for all y ∈ Core(v).
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Reallocation-proofness and weak coalitional monotonicity both rule out profitable

coalitional manipulations. Theorem 2 therefore provides a justification for the Shap-

ley value based on strategic considerations. This complements other perspectives in

cooperative game theory, in particular the question of whether an allocation rule is

stable, i.e., whether it lies in the Core (Gillies, 1953; Monderer et al., 1992). While

Core stability rules out profitable coalitional deviations where a coalition might break

away, immunity to coalitional manipulation rules out that a coalition can remain with

that grand coalition but profitable alter or misrepresent the game being played.

The proof of Theorem 2 is provided together with the proof of Theorem 4 in

the appendix. Notably, it is possible to prove the result both for the space of all

coalitional games as well as for the restricted domain of superadditive games. The

latter is shown in A.3. Finally, the properties in Theorem 2 are independent –

counterexamples are given in A.4, where we also shows that there are other allocation

rules satisfying all properties for |N | = 2.

4 Comparison to Young’s characterization of the

Shapley value

A prominent characterization of the Shapley value due to Young (1985) rests on

strong monotonicity.

Strong Monotonicity, M+. An allocation rule φ satisfies strong monotonicity if

for all v, w ∈ V and all i ∈ N , we have

v(T ∪ {i})− v(T ) ⩾ w(T ∪ {i})− w(T ) for all T ⊆ N \ {i} ⇒ φi(v) ⩾ φi(w).

Strong monotonicity requires that a player’s payoff shall not increase whenever

this player’s marginal contributions to all coalitions weakly decrease. In conjunction

with efficiency and symmetry, this property is characteristic of the Shapely value.

Young emphasized that a weaker, undirected version of strong monotonicity is suffi-

cient to obtain uniqueness.

Marginality, M. An allocation rule φ satisfies marginality if for all v, w ∈ V and

12



all i ∈ N , we have

v(T ∪ {i})− v(T ) = w(T ∪ {i})− w(T ) for all T ⊆ N \ {i} ⇒ φi(v) = φi(w).

Marginality “is a type of independence condition rather than a monotonicity

condition” Young (1985), stipulating that a player’s payoff shall only depend on this

player’s marginal contributions.

Theorem 3 (Young (1985)) An allocation rule φ satisfies [strong monotonicity

(M+) or marginality (M)], efficiency (E), and symmetry (S) if and only if φ is the

Shapley value.

In view of this theorem, the Shapley value can be considered as the allocation rule

that reflects a player’s merit in a game as measured by this player’s marginal con-

tributions. Strong monotonicity further deters individual players from strategically

underperforming.

In contrast to strong monotonicity and marginality, weak coalitional monotonicity

carries no notion of independence, i.e., it does not require the payoff of a player or of a

coalition to be invariant with respect to all changes that do not affect their marginal

contributions. Hence, Theorems 2 and 3 are both technically different and support

different interpretations. Young’s characterization emphasizes individual incentives,

whereas our characterization emphasizes the non-profitability of coalitional manip-

ulations. Note, however, that strong monotonicity implies coalitional monotonicity

(Young, 1985), which in turn implies weak coalitional monotonicity.

Even though the marginality principle has “a long tradition in economic theory”

(de Clippel and Serrano, 2008), it might be counterintuitive to require the extend

of independence that is embodied in Young’s marginality axiom, i.e., that a player’s

payoff cannot depend on other factors beyond this player’s own marginal contribu-

tion, and as such will be be disconnected by assumption from the wider economic

environment.6 In particular, we may be cautious to insist on the marginality axioms

in scenarios in which the worth of the grand coalition changes dramatically. This

6Specifically, marginality is equivalent to requirement that a player’s payoff shall only depend
on this player’s dividends (see Eq. (4) in the appendix for a formal definition of dividends), i.e.,
marginality is equivalent to [dv(S) = dw(S) for all S ∋ i] ⇒ φi(v) = φi(w). Hence, marginality
rules out that the dividends dv(T ), T ⊆ N \ {i} can have any influence on player i’s payoff.
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leads us to the following weakening of marginality.

Constrained Monotonicity, CM. An allocation rule φ satisfies constrained

marginality if for all v, w ∈ V and all i ∈ N , we have[
v(N) = w(N) and

v(T ∪ {i})− v(T ) = w(T ∪ {i})− w(T ) for allT ⊆ N \ {i}

]
⇒ φi(v) = φi(w).

Similar to marginality, constrained marginality requires that a player’s payoff

depends on this player’s marginal contributions; however, it may also depend on

the worth of the grand coalition. Consequently, a player’s payoff may increase, even

if this player’s absolute marginal contributions remain the same – given that this

player’s marginal contributions increase relative to the productivity of the others.

Moreover, constrained marginality is compatible with the equal division value. In

this sense, it is a clearly weaker assumption than marginality.

Interestingly, constrained marginality is closely connected to reallocation-proofness.

In fact, both principles are equivalent for rules that satisfy efficiency.

Lemma 2 Let φ satisfy efficiency (E). Then, φ satisfies constrained marginality

(CM) if and only if φ satisfies reallocation-proofness (R).

As a consequence, if we restrict ourselves to efficient allocation rules, then strong

monotonicity implies both weak coalitional monotonicity and reallocation-proofness.

In other words, ensuring that no individual has incentives to strategically underper-

form already paves the way for immunity to coalitional manipulations. Moreover,

we obtain an equivalent result to Theorem 2, if we replace reallocation-proofness by

constrained marginality.

Theorem 4 Let |N | ≠ 2. An allocation rule φ satisfies symmetry (S), null player

(N), efficiency (E), weak coalitional monotonicity (W), and constrained marginality

(CM) if and only if φ = Sh.

Note that all properties in Theorem 4 are independent of each other. This indi-

cates once more that constrained marginality is considerably weaker than marginal-

ity. While the latter in conjunction with symmetry and efficiency implies null player,

this is not the case for constrained marginality nor for weak coalitional monotonicity.
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Moreover, since both weak coalitional monotonicity and constrained marginality are

implied by strong monotonicity, Theorem 4 sheds light on the many consequences of

the latter. Note that the null player property is immediate from Young’s axioms, so

that Theorem 3 is immediate from Theorem 4 for |N | ≠ 2. Figure 3 summarizes the

mentioned Theorems and the relationship of the utilized axioms.

Shapley 

(1953)

Additivity

Efficiency

Symmetry

Null Player

Theorem 2

Reallocation- 

Proofness

Efficiency

Symmetry

Null Player

Theorem 7

Efficiency

Symmetry

Null Player

Young 

(1989)

Strong 

Monotonicity

Efficiency

Symmetry

Weak 

Coalitional 

Monotonicity

Constrained 

Marginality

Weak 

Coalitional 

Monotonicity

Figure 3: Four characterizations of the Shapely value; arrows indicate implica-
tions of the axioms (see Lemma 2 for equivalence of reallocation-proofness and con-
strained marginality in presence of efficiency; the other implications follow from
Young (1985)).

Finally, we shall compare our result to Casajus and Huettner (2014), who give

a characterization of the convex mixtures of the Shapley value and the equal divi-

sion value (the class of egalitarian Shapley values (Joosten, 1996)) based on weak

monotonicity, which was introduced by van den Brink et al. (2013).

Weak Monotonicity, M−. An allocation rule φ satisfies weak monotonicity if for

all v, w ∈ V and all i ∈ N , we have[
v(N) ⩾ w(N) and

v(T ∪ {i})− v(T ) ⩾ w(T ∪ {i})− w(T ) for all T ⊆ N \ {i}

]
⇒ φi(v) ⩾ φi(w).
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Weak monotonicity is a directed variant of constrained marginality. It is a

stronger requirement than constrained marginality and, it also implies (weak) coali-

tional monotonicity. The reverse is not true, which indicates that weak monotonicity

– despite its name – is not an innocuous assumption.7 Indeed, together with sym-

metry and efficiency, weak monotonicity already narrows down the set of allocation

rules considerably.

Theorem 5 (Casajus and Huettner (2014)) Let |N | ≠ 2. An allocation rule φ

satisfies symmetry (S), efficiency (E), and weak monotonicity (M−) if and only if

there is an α ∈ [0, 1] such that φ = αSh + (1− α)ED.

Clearly, adding the null player property to Theorem 5 singles out the Shapley

value, because it is the only egalitarian Shapley value that always gives nothing to

the null player.

Corollary 1 Let |N | ≠ 2. An allocation rule φ satisfies symmetry (S), efficiency

(E), weak monotonicity (M−), and null player (N), if and only if φ = Sh.

At first glance, Theorem 4 strongly resembles Corollary 1, where we have the

“directionality” in weak coalitional monotonicity. However, we remark that we do

not know of a proof that directly implies weak monotonicity from the axioms of

Theorem 4 other than the entire uniqueness proof of Theorem 4. In this sense,

Theorem 4 does not simply follow from Corollary 1. Moreover, it is not clear how

the proof of Theorem 5 by Casajus and Huettner (2014) can be adapted to proceed

within the important subclass of superadditive games.

5 Concluding Remarks

We study manipulations of cooperative games, where a coalition of players aims to

increase the total payoffs accruing to its members. Specifically, we investigate the

consequences on the payoffs assigned by the Shapley value or alternative allocation

rules. An allocation rule is immune to coalitional manipulation if no coalition can

7For example, the allocation rule given by φ = 2Sh−ED satisfies coalitional monotonicity, weak
coalitional monotonicity (W), constrained marginality (CM), and reallocation-proofness (RP), but
not weak monotonicity (M−).
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benefit from internal reallocation of surplus (reallocation-proofness), and if no coali-

tion can benefit from underreporting or otherwise reducing its worth while all else

remains the same (weak coalitional monotonicity).

Replacing additivity in Shapley’s original characterization by reallocation-proofness

and weak coalitional monotonicity yields a new characterization of the value. Our

characterization results are valid when allocation rules and axioms apply either to

the domain of all coalitional games, or to the domain of superadditive games. The

latter, restricted, domain not only supports our focus on efficient allocation rules, but

also makes reallocation-proofness particularly desirable: as long as it remains within

the class of superadditive games when reallocating worth among its subcoalitions, a

manipulating coalition can realize the purported subcoalitions’ worths by (covertly)

staying together and distributing its own worth. As this renders such manipulations

unobservable to outsiders, preventing them may only be achieved by ensuring that

they are not in the interest of the coalition itself, i.e., by applying a rule that is

reallocation-proof.

In this paper, we focus on the interpretation of coalitional manipulation by play-

ers. For applications of the Shapley value in statistics and machine learning, where

features (or model components) take the role of players, immunity to manipulation

is also a sound requirement. It puts limits to the extend in which a modeler or statis-

tician can inflate the importance (measured by the Shapley value or an alternative

allocation rule) of a set of features through a manipulation of the game. This aspect

becomes especially crucial when the model in question is noninterpretable or treated

as a blackbox, and when its assessment relies mainly on the Shapley value. Taking

a model agnostic approach on the level of the cooperative game, we demonstrate

that there is no general and plausible alternative allocation rule that can guaran-

tee a higher degree of immunity to coalitional manipulation than the Shapley value.

Nonetheless, the Shapley value is susceptible to coalitional manipulations if that ma-

nipulation affect the synergies of a set of features with the outside features. While

this adds clarity to the question of how to manipulate the Shapley value, it also calls

for further studies about manipulations of the game in specific applications.

It turns out that Young’s (1985) strong monotonicity not only implies weak coali-

tional monotonicity, but in conjunction with efficiency it also implies reallocation-

proofness. This allows us to shed more light on Young’s characterization based
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on marginality by weakening this property’s notion of independence. Marginality

requires a player’s payoff to stay the same if this player’s marginal contributions

stay the same, regardless of the productivity of the other players. We show that

reallocation-proofness can be replaced by constrained marginality in our characteri-

zation. The latter is a weakening of marginality, in the sense that it only applies if

also the value of the grand coalition remains the same, i.e., constrained marginality

requires a player’s payoff to stay the same if this player’s marginal contributions both

absolutely and relatively to the other players’ productivity stay the same.

Reallocation-proofness and weak coalitional monotonicity ensures that an allo-

cation rule is immune against coalitional manipulations. This complements other

strategic considerations in cooperative game theory, in particular the question of

whether an allocation is stable or lies in the Core (Gillies, 1953; Monderer et al.,

1992). While Core stability ensures stability against coalitional deviation after allo-

cating payoffs, immunity to coalitional manipulation ensures stability against coali-

tional manipulation before allocating payoffs.

The concept of reallocation-proofness is also helpful in view of the “Nash pro-

gram”, i.e., the attempt to connect non-cooperative game theory and cooperative

game theory, in particular through implementations of the Shapley value or other

allocation rules via non-cooperative games (see, e.g., Macho-Stadler et al. (2007), Mc-

Quillin and Sugden (2016), Brügemann et al. (2018)). Implementing an allocation

rule appears more plausible if it is immune to coalitional manipulation; moreover,

we hope that our results help to connect cooperative game theory to the study of

mechanisms that rely on some concept of coalitional strategy-proofness.

A Appendix

We first introduce further notation. Thereafter, we provide the proofs, modifications

thereof necessary to remain within the superadditive domain, and counterexamples.

A.1 Additional Notation

For ease of notation, we denote |N | = n. If no confusion arises, we omit braces

around singletons. The marginal contribution of entity i to coalition S ⊆ N \ i is
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denoted by ∂iv(S),

∂iv(S) = v(S ∪ i)− v(S). (3)

We say that two players i, j ∈ N are symmetric if v(S ∪ i) = v(S ∪ j) for all

S ⊆ N \ {i, j}, i.e., if ∂iv(S) = ∂jv(S) for all S ⊆ N \ {i, j}. Let V∗ ⊆ V̄ denote the

set of symmetric games, i.e., all players are symmetric to each other for v ∈ V∗ . The

null game 0 ∈ V∗ is given by 0(S) = 0for all S ⊆ N .

For a given v ∈ V̄, the dividends (also known as Möbius inverse Rota) are recur-

sively given by dv(∅) = 0, and

dv(S) = v(S)−
∑
R⊊S

dv(R) for all S ⊆ N. (4)

Let uT denote the unanimity game given by uT (S) = 1 if T ⊆ S and otherwise

uT (S) = 0. It is well-known that every game has the unique representation in

unanimity games,

v =
∑
T⊆N

dv(T )uT . (5)

It is well-known that the Shapley value assigns to each player an equal share of the

dividends this player helps to create, i.e.,

Shi(v) =
∑

S⊆N s.t. i∈S

dv(S)

|S| . (6)

The number of non-vanishing terms in Eq. (5) is denoted by #v, and given by

#v = |{T ⊆ N | dv(T ) ̸= 0}|. (7)

Denote the set of players who are contained in every coalition with non-vanishing

dividend in v by R(v),

R(v) = {i ∈ N | dv(T ) ̸= 0 ⇒ i ∈ T}. (8)

Note that R(v) = N implies dv(T ) = 0 for T ̸= N , i.e., v = λuN for some λ ∈ R.
For x ∈ Rn, x̄ =

∑
i∈N xi/n denotes the average. For x ∈ Rn and v ∈ V̄, we
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define the game (v + x) ∈ V̄ as the sum of v and the modular game
∑

i∈N xiui,

(v + x)(S) = v(S) +
∑
i∈S

xi forallS ⊆ N.

Finally, we write of φ(x) instead of φ(0+ x).

A.2 Proofs

Whenever (strong) reallocation-proofness applies to a manipulation, then it also

applies to the inverse manipulation. Hence, we can imply equality of total payoffs.

A.2.1 Proof of Proposition 1 on V̄

Consider |N | ≥ 3 and an allocation rule φ that satisfies E, S, and R+. Note that

R+ applied to M = N \ {i} in in combination with E give v({i}) = w({i})
v(N \ {i}) = w(N \ {i})
v(N) = w(N)

 ⇒ φi(v) = φi(w) (9)

Towards a contradiction, assume that φ is not the equal division value. Then there

exists a game v ∈ V̄ and player i ∈ N such that φi(v) ̸= v(N)/n. Now, consider the

game w constructed as follows:

w(S) =

{
v(N), S = N

v({i}) + (v(N\{i})− v({i})) |S|−1
n−2

, S ⊆ N
. (10)

As all players in w are symmetric, E and S imply φi(w) = w(N)/n = v(N)/n. Yet,

applying (9) gives φi(v) = φi(w); a contradiction to φi(v) ̸= v(N)/n.

A.2.2 Proof of Lemma 1

Note that reallocation-proofness has an equivalent formulation referring to dividends.
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Reallocation-proofness, R. For all v, w ∈ V and M ⊆ N we have:
∑

T⊆M dv(T ) =
∑

T⊆M dw(T ) and

dv(S) = dv(S) if S ∩ (N \M) ̸= ∅

 ⇒
∑
i∈M

φi(v) =
∑
i∈M

φi(w).

With this, we can easily see that the Shapley value satisfies reallocation-proofness.

Using the formula Shi(v) =
∑

T⊆N s.t. i∈T dv(T )/|T |, we get for all S ⊆ N ,

∑
i∈S

Shi(v) =
∑

T⊆N s.t. T⊆S

dv(T ) +
∑

R⊆N s.t. R∩(N\S)̸=∅

|S ∩R|
|R| dv(R).

A.2.3 Proof of Lemma 2

E andR imply CM: Let v, w ∈ V and i ∈ N are such that ∂iv(S) = ∂iw(S) forallS ⊆
N \i and v(N) = w(N). Then, we have v(N \i) = w(N \i), and applying R with

M = N \ i gives ∑k∈N\i φj(v) =
∑

k∈N\i φk(w). With E, we then get φi(v) = φi(w).

E and CM imply R: Let v, w ∈ V and M ⊆ N are such that
∑

T⊆M dv(T ) =∑
T⊆M dw(T ) and dv(S) = dv(S) if S ∩ (N \M) ̸= ∅. This implies for all j ∈ N \M

and all S ∋ j that dv(S) = dv(S), and since for all T ⊆ N \ j we have

∂jv(T )
(3),(5)
=

∑
T ′⊆(T∪{i})

dv(T ′)uT ′ −
∑
T ′⊆T

dv(T ′)uT ′ =
∑

S⊆T :S∋i

dv(S)uT ′ ,

we get ∂jv(T ) = ∂jw(T ) for all j ∈ N \M and all T ⊆ N \ j. Since further

v(N) =
∑

S:S∩(N\M )̸=∅

dv(S) +
∑
T⊆M

dv(T ) =
∑

S:S∩(N\M )̸=∅

dw(S) +
∑
T⊆M

dw(T ) = w(N),

we can apply CM to all players j ∈ N \ M and obtain φj(v) = φk(w) for all

j ∈ N \M . Finally, with efficiency we get∑
i∈M

φi(v)
E
= v(N)−

∑
j∈N\M

φj(v) = w(N)−
∑

j∈N\M

φj(w)
E
=

∑
i∈M

φi(w),

which completes the proof.
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A.2.4 Proof of Theorem 4

It is obvious from the definition of the Shapley value (2) that the above properties

are satisfied by the Shapley value. Conversely, let φ satisfy S, N, E, W, and CM.

Claim 1 For all v ∈ V, x, y ∈ Rn and i, j, k ∈ N s.t. i, j, and k are symmetric to

each other in v: [x̄ = ȳ and xi = yk] ⇒ φi(v + x) = φk(v + y).

Let x̄ = ȳ = µ and xi = yk = a. Define x′, y′ ∈ Rn as follows:

x′
i = a, x′

ℓ =
nµ− a

n− 1
forℓ ̸= i

y′k = a, y′ℓ =
nµ− a

n− 1
forℓ ̸= k

Thus, for any j ∈ N \ {i, k}, we find:

φi(v + x)
CM
= φi(v + x′)

E
= (v + x′)(N)− φj(v + x′)−∑

ℓ∈N\{i,j} φℓ(v + x′)

φk(v + y)
CM
= φk(v + y′)

E
= (v + y′)(N)− φj(v + y′)−∑

ℓ∈N\{j,k} φℓ(v + y′)

The right hand side of both equations is the equal because: (v+x′)(N) = (v+y′)(N);

φj(v + x′) = φj(v + y′) by CM; φj(v + x′) = φℓ(v + x′) for all ℓ ∈ N \ {i, j} by S;

and φj(v + y′) = φℓ(v + y′) for all ℓ ∈ N \ {j, k} by S.

⋄ Claim 1

By Claim 1, we find that for symmetric v ∈ V∗, expressions of the form φj(v + z)

depend only on v, zj, and z̄. This motivates the following notation:

∆φ
0 (v, µ, a) = φi(v + x)− φk(v + y) (11)

for somev ∈ V∗, i, k ∈ N, x, y ∈ Rn

suchthatx̄ = ȳ = µ, xi = a, yk = 0

Next, we show that ∆φ
0 (v, µ, a) is additive in a and therefore homogeneous in a for

rational numbers.

Claim 2 For all q ∈ Q, a, b, µ ∈ R and v ∈ V∗: ∆φ
0 (v, µ, qa + b) = q∆φ

0 (v, µ, a) +

∆φ
0 (v, µ, b).
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Define x, y ∈ Rn as follows:

xi = a xk = b xj = nµ−a−b
n−2

for j ∈ N \ {i, k}
yi = a+ b yk = 0 yj = nµ−a−b

n−2
for j ∈ N \ {i, k}

Note that x̄ = µ = ȳ and (v + x)(N) = (v + y)(N). Thus, for any j ∈ N \ {i, k}, we
find

∆φ
0 (v, µ, a+ b)

(11)
= φi(v + y)− φk(v + y)
E, S
= (v + y)(N)− (n− 2)φj(v + y)− φk(v + y)− φk(v + y)

Claim 1 for j
= (v + y)(N)− (n− 2)φj(v + x)− φk(v + y)− φk(v + y)
E, S
= φi(v + x)− φk(v + y) + φk(v + x)− φk(v + y)
(11)
= ∆φ

0 (v, µ, a) + ∆φ
0 (v, µ, b)

Finally, it is well-known that any additive function is homogeneous in rational

numbers.

⋄ Claim 2

Next, we argue that ∆φ
0 is positive if a is positive and v is the null game.

Claim 3 For all a, µ ∈ R: a ⩾ 0 ⇒ ∆φ
0 (0, µ, a) ⩾ 0.

For a = 0, ∆φ
0 (0, µ, a) = 0 follows from definition (11). Now let a ̸= 0. By N, we

have φk(x) = 0 if xk = 0. Therefore, (11) simplifies to

∆φ
0 (0, x̄, xi) = φi(x) for all x ∈ Rn. (12)

In particular ∆φ
0 (0, µ, µ) = φi(µ, . . . , µ). By E and S, we further get φi(µ, . . . , µ) =

µ, i.e., ∆φ
0 (0, µ, µ) = µ.

Now consider the case µ
a
∈ Q. By Claim 2, µ

a
∆φ

0 (0, µ, a) = ∆φ
0 (0, µ, µ). Hence,

∆φ
0 (0, µ, a) =

a
µ
µ = a, i.e.,

∆φ
0 (0, x̄, xi) = xi if

x̄

xi

∈ Q. (13)
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Finally, let x ∈ Rn be such that 0 < xi. Pick some q ∈ Q b such that 0 < q(nx̄ −
xi) < xi, and define y ∈ Rn by yi = q(nx̄ − xi) and yk = xk for k ̸= i. Note

that ȳ
yi

= 1+q
q

∈ Q. By W, φi(x) > φi(y). Hence, with (12) and (13), we get

∆φ
0 (0, x̄, xi) > b > 0.

⋄ Claim 3

Next, we show that ∆φ
0 (0, µ, a) is increasing in a.

Claim 4 For all a′, a′′, µ ∈ R: a′ ⩽ a′′ ⇒ ∆φ(0, µ, a′) ⩽ ∆φ(0, µ, a′′).

This follows from a′′ − a′ ⩾ 0 and

∆φ(0, µ, a′′)
Claim 2
= ∆φ(0, µ, a′) + ∆φ(0, µ, a′′ − a′)

Claim 3

⩾ ∆φ(0, µ, a′).

⋄ Claim 4

Now we can argue that ∆φ
0 (0, µ, a) is linear in a.

Claim 5 For all λ, a, b, µ ∈ R: ∆φ
0 (0, µ, λa) = λ∆φ

0 (0, µ, a)

By Claim 4, ∆φ(0, µ, a) is monotonic in a and by Claim 2 we have ∆φ(0, µ, qa) =

q∆φ(0, µ, a) for rational q ∈ Q. Since Q is dense in R, this proves the claim.

⋄ Claim 5

Claim 6 For all x ∈ Rn: φ(x) = Sh(x).

By N, we have φk(0 + x) = 0 if xk = 0. Therefore, (11) simplifies to ∆φ
0 (0, µ, µ) =

φi(µ, . . . , µ). By E and S, we further get φi(µ, . . . , µ) = µ, i.e., ∆φ
0 (0, µ, µ) = µ. By

Claim 5, ∆φ
0 (0, µ, a) = a, i.e., φi(x)− 0 = xi.

⋄ Claim 6

Next we consider games in which cooperation requires all players.

Claim 7 For all a, µ, λ ∈ R: ∆φ
0 (λuN , µ, a) = ∆φ

0 (0, µ, a).

Let q ∈ Q, and define x ∈ Rn as follows:

xi = qa xk = nµ− qa xj = 0 for j ∈ N \ {i, k}
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We then have

q[∆φ
0 (λuN , µ, a)−∆φ

0 (0, µ, a)]
Claim 2
= ∆φ

0 (λuN , µ, qa)−∆φ
0 (0, µ, qa)

(11)
= φi(λuN + x)− φj(λuN + x)− [φi(x)− φj(x)]

= φi(λuN + x)− φi(x) + [φj(x)− φj(λuN + x)].

By Claim 1, φj(x) − φj(λuN + x) is independent of the choice of q. Toward a

contradiction, suppose ∆φ
0 (λuN , µ, a) ̸= ∆φ

0 (0, µ, a). Hence, we can find some q such

that φi(λuN + x) < φi(x). However, with z given by zi = 0 and zk = λ/(n − 1),

Claim 6 implies φi(x) = φi(x + z). By CM, we have φi(x + z) = φi(λuN\{i} + x).

If λ ⩾ 0, then W further implies φi(λuN\{i} + x) ⩽ φi(λuN + x), i.e., φi(x) ⩽

φi(λuN + x) and we arrive at a contradiction. Analogously, for λ ⩽ 0 we can choose

a q such that φi(λuN + x) > φi(x) and construct a contradiction.

⋄ Claim 7

Claim 8 For all λ ∈ R and x ∈ Rn: φ(λuN + x) = Sh(λuN + x).

By Claims 7 and 6, ∆φ
0 (λuN , µ, a) = ∆φ

0 (0, µ, a) = a. This gives for all x ∈ Rn

xi − xj = ∆φ
0 (λuN , x̄, xi)−∆φ

0 (λuN , x̄, xj) = φi(λuN + x)− φj(λuN + x).

Summing up over all j ∈ N yields

nxi −
∑
j∈N

xj = nφi(λuN + x)−
∑
j∈N

φj(λuN + x)

E
= nφi(λuN + x)− λ−

∑
j∈N

xj.

Hence, φi(λuN + x) = λ/n+ xi = Shi(λuN + x).

⋄ Claim 8

The remainder of the proof establishes φ(v+ x) = Sh(v+ x) by induction on #v

as defined in (7).

25



Induction basis. For #v = 0, i.e., v = 0, φ(v + x) = Sh(v + x) follows from Claim

6.

Induction hypothesis (IH). Suppose φ(v + x) = Sh(v + x) for all x ∈ Rn and all

v ∈ V̄ such that #v ⩽ t.

Induction step. We want to show that

φi(v + x) = Shi(v + x) for all x ∈ Rn, all i ∈ N, and allv ∈ V̄ such that#v = t+ 1.

(14)

Let (v + x) ∈ V̄ be such that #v = t+ 1. In the case of N = R(v), i.e., v = λuN for

some λ ∈ R, Claim 8 establishes (14).

Now consider the case N ̸= R(v). Pick any i ∈ N \R(v) and construct vi ∈ V̄ by

vi =
∑

T⊆Ns.t.i∈T

dv(T )uT . (15)

Define y ∈ Rn as follows:

yi = xi, yk = xk +
∑

T⊆N\{i} s.t. k∈T

dv(T )

|T | = Shk(v − vi) for k ∈ N \ {i}.

Note that #vi ⩽ t, (vi + y)(N) = (v + x)(N), and ∂i(v
i + y)(S) = ∂i(v + x)(S) for

all S ⊆ N \ i. Hence, we have

φi(v + x)
CM of φ

= φi(v
i + y)

IH
= Shi(v

i + y)
(2)
= Shi(v + x).

Since i ∈ N \R(v) was chosen arbitrarily, we established (14) for all i ∈ N \R(v).

Now pick some arbitrarily j ∈ R(v). Choose some k ∈ N \ R(v) and define z ∈ Rn

as follows:

zk = nx̄− (n− 1)xj zℓ = xj forℓ ∈ N \ k .

Since any two player in R(v) are symmetric in (v + z), invoking S, E, and (14) for
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i ∈ N \R(v), entails

|R(v)|φj(v + z)
S of φ
=

∑
ℓ∈R(v)

φℓ(v + z)

E of φ
= (v + z)(N)−

∑
i∈N\R(v)

φi(v + z)

(14) for i∈N\R(v)
= (v + z)(N)−

∑
i∈N\R(v)

Shi(v + z)

(2)
= |R(v)|Shj(v + z).

This yields, φj(v + z) = Shj(v + z).

Finally, since (v + z)(N) = (v + x)(N), and ∂j(v + z)(S) = ∂j(v + x)(S) for all

S ⊆ N \ {j}, CM implies φj(v+ x) = φj(v+ z) and Shj(v+ x) = Shj(v+ z), which

establishes φj(v + x) = Shj(v + x) for j ∈ R(v).

This completes the proof on the domain V̄. The following section explains which

adjustments are necessary for the proof to go through in Vs.

A.3 Staying within the superadditive domain Vs

A.3.1 Proof of Proposition 1 on Vs

To show uniqueness, suppose that φ satisfies R+, E and S for games in Vs. Towards

a contradiction, assume that there is v ∈ Vs and i ∈ N , s.t. φi(v) ̸= v(N)/n. We

define three games:

v1(S) =

{
min{v(T ) : |T | = |S|, i ∈ T}, if i ∈ S

min{v(T ) : |T | = |S|, i /∈ T}, if i /∈ S
;

v2(S) =


min{v(T ) : |T | = |S|}, if |S| < n− 1

min{v(T ) : |T | = |S|, i ∈ T}, if |S| = n− 1 and i ∈ S

v(S), if S = N\{i} or S = N

;

v3(S) = min{v(T ) : |T | = |S|}.
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Note that the worth of the grand coalition remains v1(N) = v2(N) = v3(N) = v(N).

All players j ∈ N\{i} are symmetric in v1 and in v2, and all players (including player

i) are symmetric in v3. Moreover, all three games are superadditive.

By (8), φi(v
1) = φi(v) ̸= v(N)/n. Thus, by E and S, φj(v

1) ̸= v(N)/n for all

j ∈ N\{i}. Taking the perspective of any player j ∈ N\{i} and applying (8) to

v1 and v2, we get φj(v
2) = φj(v

1) ̸= v(N)/n for all j ∈ N\{i}. By S and E, this

implies φi(v
2) ̸= v(N)/n, i.e., φk(v

2) ̸= v(N)/n for all k ∈ N .

Finally let k ∈ argmink∈N{v(N\{k})}, so that v2(N\{k}) = v3(N\{k}). Then,

(8) applied to player k, v2 and v3, gives φk(v
3) = φk(v

2) ̸= v(N)/n. However, this is

a contradiction to φk(v
3) = v(N)/n for all k ∈ N , which follows from S and E since

all players are symmetric in v3.

A.3.2 Proof of Proposition 4 on Vs

For all x ∈ Rn, v+ x is superadditive if and only if v is superadditive. The proofs of

Claim 1 to Claim 8 stay within the class of superadditive games. For the remaining

argument to go through, we add a second induction.

First, define V+ = {v ∈ V | dv(T ) ⩾ 0forallT ⊆ N} ⊆ Vs as the set of games with

non-negative dividends, i.e., a subset of all superadditive games. Note that any game

derived from v+ ∈ V+by deletion of dividends will remain within that set. Hence the

induction argument in the proof of Theorem 7 on #v, applied to v+ ∈ V+ instead

of of v ∈ V, i.e., moving to v+i + y by deleting dividends of coalitions not including

player i and instead distributing them equally among the coalitions members by an

adjustment of the modular game, remains within the class of superadditive games.

This establishes φ(v + x) = Sh(v + x) for all v ∈ V+, x ∈ Rn.

Now, take any superadditive game v and define the modular game xv by xv
i = dv(i)

for i ∈ N . Further, we define v∗ and ṽ by their dividends: dv
∗
(T ) = dṽ(T ) = 0

if |T | = 1 while for |T | ≥ 2 we have dv
∗
(T ) = max{0,maxT ′:|T ′|=|T |d

v(T ′)} and

dṽ(T ) = dv
∗
(T )− dv(T ). Hence, by (5)

v∗ =
∑

T⊆N,|T |⩾2

dv
∗
(T )uT and ṽ =

v∑
T⊆N,|T |⩾2

dṽ(T )uT and v = v∗ + xv − ṽ.

Since dv
∗
(T ) ⩾ 0 for all T ⊆ N , we have v∗ ∈ V+ and hence in particular φ(v∗+xv) =
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Sh(v∗ + xv).

Moreover, since dṽ(T ) ≥ 0 for all T ⊆ N , deletion of this dividend from ṽ leaves

us with a superadditive game, i.e., v∗ + xv − (ṽ − dṽ(T )uT ) = v + dṽ(T )uT is again

superadditive. Thus, we can adjust the induction argument for a second loop as

follows. The induction index is #ṽ. The induction basis becomes: For #ṽ = 0, i.e.,

v = v∗ + xv, we have φ(v + x) = Sh(v + x). The induction step picks i ∈ N \ R(ṽ)

and constructs vi ∈ V by

vi = v∗ + xv +
∑

T⊆Ns.t.i∈T

d̃v(T )uT .

A.4 Counterexamples

The following allocation rule φ2 satisfies all our axioms S, N, E, W, CM, and R if

there are only two players, but differs from the Shapley value: for all v ∈ V({i, j}),
let

φ2
i (v) =


v({i,j})

2
, if v(i) = v(j);

max{v(i), v({i, j})− v(j)}, if v(i) > v(j);

min{v(i), v({i, j})− v(j)}, if v(i) < v(j).

The weighted Shapley value Kalai and Samet (1987) with unequal weights satisfies

N, E, W, CM, and R, but not S.

The equal division value, given by EDi(v) = v(N)/n for all v ∈ V and i ∈ N ,

satisfies S, E, W, R, CM, but not N.

The null value, given by Nulli(v) = 0 for all v ∈ V and i ∈ N , satisfies N, W, R,

CM, and S, but not E.

The following allocation rule φW satisfies S, N, E, R, CM, but not W:

φW
i (v) =

{ (
Shi(v)− dv(N)

n

)
v(N)

v(N)−dv(N)
, if dv(N) > 0 and v(N)− dv(N) > 0

Shi(v), otherwise
,

where the dividend dv(N) is defined in (4).

The nucleolus satisfies S, N, E, W, but neither CM nor R.
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